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Definitions

a

b c

d

A tournament
(and a semicomplete digraph)

a

b c

d

A semicomplete digraph
(not a tournament)

A digraph is eulerian if it is connected and every vertex has its
in-degree equal to its out-degree.

A digraph containing a spanning eulerian subdigraph is called
supereulerian.

If a digraph has a Hamilton cycle, then it is supereulerian.
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Examples

a1

a2

y1

y2

b1

b2

x

Contains a spanning eulerian subdigraph, but no Hamilton cycle

Why does the above contain no Hamilton cycle?

Because any path from y1 to y2 contains x and any path from y2
to y1 also contains x .

Why is it supereulerian?
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a1

a2

y1
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A spanning eulerian subdigraph

Why does the above contain no Hamilton cycle?

Because any path from y1 to y2 contains x and any path from y2
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Eulerian factor

A Eulerian factor, F , is a subdigraph where d+
F (x) = d−F (x) ≥ 1

for all vertices x .

Each connected component of a Eulerian factor is called a
component.

A spanning eulerian sub-
digraph is a factor with
one component.

A non-supereulerian digraph
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Eulerian factor

A Eulerian factor, F , is a subdigraph where d+
F (x) = d−F (x) ≥ 1

for all vertices x .

Each connected component of a Eulerian factor is called a
component.

A spanning eulerian sub-
digraph is a factor with
one component.

A eulerian factor in
a non-supereulerian digraph
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Known results

Theorem 1 (Camion): Every strongly connected semicomplete
digraph has a hamiltonian cycle.

Bang-Jensen and Thomassé made the following conjecture in 2011
which may be seen as a generalization of Camion’s theorem (λ(D)
is the arc-connectivity of D and α(D) is the independence number
of D).

Conjecture 2 (Bang-Jensen and Thomassé): Every digraph D with
λ(D) ≥ α(D) is supereulerian.

This is still open, even for α(D) = 2.

Theorem 3 (Bang-Jensen and Maddaloni): Every digraph D with
λ(D) ≥ α(D) has an eulerian factor.
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spanning eulerian subdigraph avoiding given arcs

In this talk we will consider the following conjecture, which is
proved for k = 1, 2, 3, but otherwise open.

Conjecture 4 (Bang-Jensen, Havet and AY): Let D = (V ,A) be a
(k + 1)-arc-strong semicomplete digraph and let A′ ⊂ A be any set
of k arcs of D. Then D \ A′ has is supereulerian.

If we look at vertex-connectivity instead of arc-connectivity, then ...

Theorem 5 (Fraisse and Thomassen): Let T = (V ,A) be a
(k + 1)-strong tournament and let Â ⊂ A have size k . Then T \ Â
has a hamiltonian cycle.
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Definitions

a1

a2

y1

y2

b1

b2

x

D

D is 2-arc-connected and 1-strong.

D \ y1y2 has no Hamilton cycle, so the Fraise-Thomassen result
cannot be extended to arc-connectivity.

D \ y1y2 is supereulerian (which has to be true as the conjecture
was true when k = 1).

Anders Yeo Spanning eulerian subdigraphs avoiding k prescribed arcs in semicomplete digraphs



Definitions

a1

a2

y1

y2

b1

b2

x

D

D is 2-arc-connected and 1-strong.

D \ y1y2 has no Hamilton cycle, so the Fraise-Thomassen result
cannot be extended to arc-connectivity.

D \ y1y2 is supereulerian (which has to be true as the conjecture
was true when k = 1).

Anders Yeo Spanning eulerian subdigraphs avoiding k prescribed arcs in semicomplete digraphs



Definitions

a1

a2

y1

y2

b1

b2

x

D

D is 2-arc-connected and 1-strong.

D \ y1y2 has no Hamilton cycle, so the Fraise-Thomassen result
cannot be extended to arc-connectivity.

D \ y1y2 is supereulerian (which has to be true as the conjecture
was true when k = 1).

Anders Yeo Spanning eulerian subdigraphs avoiding k prescribed arcs in semicomplete digraphs



Definitions

a1

a2

y1

y2

b1

b2

x

D

D is 2-arc-connected and 1-strong.

D \ y1y2 has no Hamilton cycle, so the Fraise-Thomassen result
cannot be extended to arc-connectivity.

D \ y1y2 is supereulerian (which has to be true as the conjecture
was true when k = 1).

Anders Yeo Spanning eulerian subdigraphs avoiding k prescribed arcs in semicomplete digraphs



Main results

Conjecture 4 (Bang-Jensen, Havet and AY): Let D = (V ,A) be a
(k + 1)-arc-strong semicomplete digraph and let A′ ⊂ A be any set
of k arcs of D. Then D \ A′ has is supereulerian.

Theorem 6 (Bang-Jensen, Havet and AY): Let D = (V ,A) be a
(k + 1)-arc-strong semicomplete digraph and let A′ be a set of k
arcs from D. Then D \ A′ has an eulerian factor.

So we know there is a eulerian factor in D \ A′. We will now use
this to prove the following result.

Theorem 7 (Bang-Jensen, Déprés and AY): Let D = (V ,A) be a
(2k + 1)-arc-strong semicomplete digraph and let A′ ⊂ A be any
set of k arcs of D. Then D \ A′ has is supereulerian.

The previously best known bound was
(
(k+1)2

4 + 1
)

-arc-strong.

the (2k + 1) in Theorem 7, can be improved to d6k+1
5 e.
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Outline of proof of Theorem 7

Let D be a (2k + 1)-arc-strong semicomplete digraph, A′ ⊂ A with
|A′| ≤ k and D ′ = D \ A′.

By Theorem 6, let F = C1 ∪ C2 ∪ · · · ∪ Cp be a eulerian factor in
D ′ (p ≥ 2 otherwise we are done).

As D is (2k + 1)-arc-strong, |V (D)| > 2k + 1 and there exists a
vertex u adjacent to all other vertices in D ′.

u is called universal.

Without loss of generality assume u ∈ V (C1) and |V (Cp)| is
maximum.
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Outline of proof of Theorem 7

Without loss of generality u dominates Cp (we will show this on
the board).

Let Li be an in-branching in Ci for all i = 1, 2, . . . , p − 1, such that
u is the root of L1.

Let L = L1 ∪ L2 ∪ · · · ∪ Lp−1. Note that V (L) = V (D ′) \ V (Cp).

A S-path is a sequence of vertices p0p1p2 . . . pl , such that the
following holds.

pi ∈ V (L) when 0 ≤ i < l and pl ∈ V (Cp).

pipi+1 is an (F − L)-arc (i.e. pipi+1 ∈ A(F ) \ A(L)) or pi+1pi
is a non-F -arc (i.e pi+1pi ∈ A(D ′) \ A(F )).

Let X ⊆ V (L) contain all non-start-vertices of S-paths.

Let Y ⊆ V (L) contain all start-vertices of S-paths.
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u is the root of L1.

Let L = L1 ∪ L2 ∪ · · · ∪ Lp−1. Note that V (L) = V (D ′) \ V (Cp).

A S-path is a sequence of vertices p0p1p2 . . . pl , such that the
following holds.

pi ∈ V (L) when 0 ≤ i < l and pl ∈ V (Cp).

pipi+1 is an (F − L)-arc (i.e. pipi+1 ∈ A(F ) \ A(L)) or pi+1pi
is a non-F -arc (i.e pi+1pi ∈ A(D ′) \ A(F )).

Let X ⊆ V (L) contain all non-start-vertices of S-paths.

Let Y ⊆ V (L) contain all start-vertices of S-paths.
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Outline of proof of Theorem 7

We will now prove the following on the board.

1. If y ∈ Y , then y cannot dominate Cp.

2. So u 6∈ Y , implying that u ∈ X and X 6= ∅.

3. If xy ∈ A(F ) is a (X ,Y )-arc, then x cannot dominate Cp.

4. There are at least k + 1 (X ,Y )-arcs belonging to F .

5. We obtain a contradiction (to p ≥ 2).
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Conclusion

Using a similar approach, the bound of 2k + 1 can be improved.

Theorem 8 (Bang-Jensen, Déprés and AY): Let D = (V ,A) be a
d6k+1

5 e-arc-strong semicomplete digraph and let A′ ⊂ A be any set
of k arcs of D. Then D \ A′ has is supereulerian.

However the proof of this is quite technical, even though it uses
similar techniques to the above.

This appraoch could potentially be used to improve the d6k+1
5 e

bound slightly, but it doesn’t seem like this approach can be used
to give the k + 1 bound conjectured to be true.

But we still believe the conjecture is true.
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The end

The end

Thank you
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Appendix

Theorem (Bang-Jensen, Havet and AY): If D is a digraph then D has no
eulerian factor if and only if V (D) can be partitioned into R1, R2 and Y
such that the following holds.

Y is independent.

d(R2,Y ) = 0, d(Y ,R1) = 0 and d(R2,R1) < |Y |.

R1 R2

Y
independent

less than |Y | arcs

There are no arcs from R2 to Y and no arcs from Y to R1 and less than
|Y | arcs from R2 to R1.
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