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cycle C such that all edges have an endpoint on C
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A localization method

1. Find equivalent formulation in a ball

2. Decrease the radius

3. Use the structure of balls

Asratian, Khachatryan (1990)

G is connected, |V (G)| ≥ 3,

for all v and all non-adjacent neighbors x,y of v:

d(x) + d(y) ≥ |N(x) ∪ N(y) ∪ N(v)|
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Localizations of Bondy and Bauer et al.

Bondy (1980)

G is 2-connected, |V (G)| ≥ 3,

for all non-adjacent x,y, z:

d(x) + d(y) + d(z) ≥ |V (G)| + 2

⟹ dominating cycle

Bauer, Broersma, Veldman, Rao (1989)

G is 2-connected, |V (G)| ≥ 3,

for all non-adjacent x,y, z:

d(x) + d(y) + d(z) ≥ |V (G)| + κ(G)

⟹ Hamilton cycle
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• Bondy – partial contradiction

• new x,y, z

• Bondy – full contradiction
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Locally finite infinite graphs

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, |V (G)| ≥ 3,

for all v and all non-adjacent interior vertices x,y, z inG3(v):

d(x) + d(y) + d(z) ≥ |M3(v)| + κ(G3(v))

⟹ Hamilton curve



Locally finite infinite graphs

Conjecture — Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, |V (G)| ≥ 3,

for all v and all non-adjacent interior vertices x,y, z inG3(v):

d(x) + d(y) + d(z) ≥ |M3(v)| + κ(G3(v))

⟹ Hamilton circle



Thank you for your attention!




