A localization method in Hamiltonian graph theory

Jonas B. Granholm

Joint work with Armen S. Asratian and Nikolay K. Khachatryan

Department of Mathematics Linköping University

Cycles

Cycle:

closed walk $v_1 v_2 \cdots v_n v_1$ with distinct vertices v_1, \ldots, v_n

Cycles

Cycle:

closed walk $v_1 v_2 \cdots v_n v_1$ with distinct vertices v_1, \ldots, v_n

Dominating cycle:

cycle C such that all edges have an endpoint on C

Cycles

Cycle: closed walk $v_1v_2 \cdots v_nv_1$ with distinct vertices v_1, \ldots, v_n **Dominating cycle:** cycle *C* such that all edges have an endpoint on *C* **Hamilton cycle:** cycle that contains all vertices

Dirac (1952)

```
|V(G)| \ge 3, for all x:
```

 $d(x) \geq |V(G)|/2$

Dirac (1952)

 $|V(G)| \ge 3$, for all *x*:

 $d(x) \geq |V(G)|/2$

 \implies Hamilton cycle

Ore (1960)

 $|V(G)| \ge 3$, for all non-adjacent *x*, *y*:

 $d(x) + d(y) \ge |V(G)|$

Balls

Distance from x to y: number of edges in shortest x-y-path

Balls

Distance from x to y: number of edges in shortest x-y-path

Diameter of G:

greatest distance between any two vertices in G

Balls

Distance from x to y: number of edges in shortest x-y-path
Diameter of G: greatest distance between any two vertices in G
Ball of radius r around v: part of graph within distance r from v

Ore (1960)

- $|V(G)| \ge 3$, for all non-adjacent x, y: $d(x) + d(y) \ge |V(G)|$
- \implies Hamilton cycle

Ore (1960)

 $|V(G)| \ge 3$, for all non-adjacent x, y: $d(x) + d(y) \ge |V(G)|$

- small diameter $(\operatorname{diam}(G) \le 2)$
- large edge density $(|E(G)| \ge \text{constant} \cdot |V(G)|^2)$

Ore (1960)

 $|V(G)| \ge 3$, for all non-adjacent x, y: $d(x) + d(y) \ge |V(G)|$

 \implies Hamilton cycle

Asratian, Khachatryan (1985)

G is connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent neighbors *x*, *y* of *v*:

 $d(x) + d(y) \geq |M_2(v)|$

Ore (1960)

 $|V(G)| \ge 3$, for all non-adjacent *x*, *y*:

 $d(x) + d(y) \ge |V(G)|$

1. Find equivalent formulation in a ball

Ore (1960)

 $|V(G)| \ge 3$, for all non-adjacent *x*, *y*:

 $d(x) + d(y) \ge |V(G)|$

1. Find equivalent formulation in a ball

Asratian, Khachatryan (2007)

G is connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y* in $G_3(v)$:

 $d(x) + d(y) \ge |M_3(v)|$

- 1. Find equivalent formulation in a ball
- 2. Decrease the radius

Asratian, Khachatryan (2007)

G is connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y* in *G*₃(*v*):

 $d(x) + d(y) \ge |M_3(v)|$

- 1. Find equivalent formulation in a ball
- 2. Decrease the radius

Asratian, Khachatryan (1985)

G is connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent neighbors *x*, *y* of *v*:

 $d(x) + d(y) \geq |M_2(v)|$

- 1. Find equivalent formulation in a ball
- 2. Decrease the radius
- 3. Use the structure of balls

Asratian, Khachatryan (1985)

G is connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent neighbors *x*, *y* of *v*:

 $d(x) + d(y) \geq |M_2(v)|$

- 1. Find equivalent formulation in a ball
- 2. Decrease the radius
- 3. Use the structure of balls

Asratian, Khachatryan (1990)

G is connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent neighbors *x*, *y* of *v*:

 $d(x) + d(y) \ge |N(x) \cup N(y) \cup N(v)|$

Connectivity

Connectivity

k-connected:

remains connected when deleting < k vertices

Connectivity

Connectivity

k-connected:

remains connected when deleting < k vertices

Connectivity

Connectivity

k-connected: remains connected when deleting < *k* vertices
Connectivity, κ(G): largest *k* such that G is *k*-connected

Bondy (1980)

```
G is 2-connected, |V(G)| \ge 3, for all non-adjacent x, y, z:
```

```
d(x) + d(y) + d(z) \ge |V(G)| + 2
```

 \implies dominating cycle

Bauer, Broersma, Veldman, Rao (1989)

G is 2-connected, $|V(G)| \ge 3$, for all non-adjacent *x*, *y*, *z*:

 $d(x) + d(y) + d(z) \ge |V(G)| + \kappa(G)$

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 4-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_4(v)$:

 $d(x)+d(y)+d(z)\geq |M_4(v)|+2$

 \implies dominating cycle

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 4-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_4(v)$:

 $d(x) + d(y) + d(z) \ge |M_4(v)| + \kappa (G_4(v))$

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_3(v)$:

$$d(x) + d(y) + d(z) \ge |M_3(v)| + 2$$

 \implies dominating cycle

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_3(v)$:

$$d(x) + d(y) + d(z) \ge |M_3(v)| + \kappa (G_3(v))$$

Bondy (1980)

```
G is 2-connected, |V(G)| \ge 3, for all non-adjacent x, y, z:
```

```
d(x) + d(y) + d(z) \ge |V(G)| + 2
```

 \implies dominating cycle

Bondy (1980)

G is 2-connected, $|V(G)| \ge 3$, for all non-adjacent *x*, *y*, *z*:

 $d(x) + d(y) + d(z) \ge |V(G)| + 2$

Bondy (1980)

G is 2-connected, $|V(G)| \ge 3$, for all non-adjacent *x*, *y*, *z*:

 $d(x) + d(y) + d(z) \ge |V(G)| + 2$

Bondy (1980)

G is 2-connected, $|V(G)| \ge 3$, for all non-adjacent *x*, *y*, *z*:

 $d(x) + d(y) + d(z) \ge |V(G)| + 2$

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_3(v)$:

$$d(x) + d(y) + d(z) \ge |M_3(v)| + 2$$

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_3(v)$:

 $d(x) + d(y) + d(z) \ge |M_3(v)| + 2$

- find *x*, *y*, *z* that *almost* work
- Bondy partial contradiction
- new x, y, z
- Bondy full contradiction

Bauer, Broersma, Veldman, Rao (1989)

G is 2-connected, $|V(G)| \ge 3$, for all non-adjacent *x*, *y*, *z*:

 $d(x) + d(y) + d(z) \ge |V(G)| + \kappa(G)$

Bauer, Broersma, Veldman, Rao (1989)

G is 2-connected, $|V(G)| \ge 3$, for all non-adjacent *x*, *y*, *z*:

```
d(x) + d(y) + d(z) \ge |V(G)| + \kappa(G)
```

 \implies Hamilton cycle

Proof by Wei (1999):

- Pick a longest cycle *C* and a maximum cut set *V*
- Using *C* and the inequality, show *V* can't be a cut set

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_3(v)$:

$$d(x) + d(y) + d(z) \ge |M_3(v)| + \kappa (G_3(v))$$

 \implies Hamilton cycle

Proof by Wei (1999):

- Pick a longest cycle *C* and a maximum cut set *V*
- Using *C* and the inequality, show *V* can't be a cut set

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_3(v)$:

$$d(x) + d(y) + d(z) \ge |M_3(v)| + 2$$

 \implies dominating cycle

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_3(v)$:

$$d(x) + d(y) + d(z) \ge |M_3(v)| + \kappa \big(G_3(v)\big)$$

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_3(v)$:

 $d(x) + d(y) + d(z) \ge$

 \implies dominating cycle

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_3(v)$:

 $d(x) + d(y) + d(z) \ge |M_3(v)| + \kappa (G_3(v))$

Definitions

Locally finite: vertices have finite degree

Definitions

Locally finite: vertices have finite degree **Ray:** one-way infinite path

Definitions

Locally finite: vertices have finite degree Ray: one-way infinite path Rays are equivalent if not separated by a finite vertex set

Definitions

Locally finite: vertices have finite degree Ray: one-way infinite path Rays are equivalent if not separated by a finite vertex set End: equivalence class of the equivalence relation on rays

Freudenthal compactification

graph $G \rightarrow$ topological space |G|

Freudenthal compactification

graph $G \rightarrow$ topological space |G|

Circles and curves

Circle: embedding of a (topological) circle in |G|

Circles and curves

Circle: embedding of a (topological) circle in |G|**Curve:** continuous image of a (topological) circle in |G|

Circles and curves

Circle: embedding of a (topological) circle in |G| Curve: continuous image of a (topological) circle in |G| Hamilton circle/curve: contains all "vertices" without repetition

Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_3(v)$:

$$d(x) + d(y) + d(z) \ge |M_3(v)| + \kappa (G_3(v))$$

 \implies Hamilton curve

Conjecture – Asratian, Granholm, Khachatryan (2018+)

G is connected, all 3-balls are 2-connected, $|V(G)| \ge 3$, for all *v* and all non-adjacent interior vertices *x*, *y*, *z* in $G_3(v)$:

$$d(x) + d(y) + d(z) \ge |M_3(v)| + \kappa (G_3(v))$$

Thank you for your attention!

