
On sequential basis 
replacement in matroids

Zivand Ran RodaElad, KotlarDani 

Tel-Hai College, Israel



Matroids

• A matroid is a closed down hypergraph over a 
ground set whose maximal sets are all of the same 
size. 

M



Matroids

• A matroid is a closed down hypergraph over a 
ground set whose maximal sets are all of the same 
size. 

• An equivalent definition:

M

for                    , if                       then there exists                     

such that

for                    , if                       then there exists                     

such that

,X Y ∈M | | | |X Y> x X∈
Y x+ ∈M



Matroids

• A matroid is a closed down hypergraph over a 
ground set whose maximal sets are all of the same 
size. 

• An equivalent definition:

• A basis in a matroid is a maximal set.

M

for                    , if                       then there exists                     

such that

for                    , if                       then there exists                     

such that

,X Y ∈M | | | |X Y> x X∈
Y x+ ∈M



Matroids

• A matroid is a closed down hypergraph over a 
ground set whose maximal sets are all of the same 
size. 

• An equivalent definition:

• A basis in a matroid is a maximal set.

• The sets in         are called independent sets

M

for                    , if                       then there exists                     

such that

for                    , if                       then there exists                     

such that

,X Y ∈M | | | |X Y> x X∈
Y x+ ∈M

M



Matroids
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• A basis in a matroid is a maximal set.

• The sets in         are called independent sets

• A circuit is a minimal non-independent set.
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Examples of matroids

• Partition matroid

Ground set - any set     . Given a partition

The matroid consists of all the sets containing at most one 
element from each  

• Graphic matroid

Ground set - the edges in a given graph    

The matroid consists of all the forests in     

• Linear matroid (also known as vectorial or representable)

Ground set - a set of vectors in a vector space.

The matroid consists of all the linearly independent sets
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There is a more general version of this problem by Kajitani and Sugishita (1983)
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such that           is a circuit. We call      the support of    
in:      

• For two bases       and    , and two elements              
and            , we say that      and      are exchangeable
if                    and                    are bases.

• and             are exchangeable if and only if         
and

• for any             there exists             such that     and      
are  exchangeable.
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The exchange problem in linear 
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• In linear matroids, given two bases      and    , the 
existence of a solution to the basis exchange 
problem depends on their transition matrix.

• So, instead of studying bases we have to study non-
singular matrices over a field.

A B

1 2
{ , , , }nA a a a= …

1 2
{ , , , }nB b b b= … ABM M= = the transition matrix 

from A to B

ia and       are exchangeable if and only ifjb

0ijM ≠ 1
0jiM − ≠and
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{ , , , }nB b b b= …

M
1 2

{ , , , }nA a a a= …

{1,2, , }n… {1,2, , }k n∈ …

( )k kA a bσ− +

(1) ( ) 1
{ , , } { , , }k kA a a b bσ σ− … ∪ …

Two proofs:

1) For the linear matroid case

2) For the general case (using matroid contraction)
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… and the fact that after each replacement the 
transition matrix entries are (up to a nonzero scalar 
constant) minors of the original transition matrix.

This follows from:

(Dodgson's Condensation Theorem, 1866)
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A MB
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a A∈
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(Follows easily from Hall's theorem)

Theorem 1 provides a proof not relying on Hall's 

theorem
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I
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Proof 1 (Donald and Tobey)  uses Hall's theorem.

Proof 2 (K, Roda, Ziv, 2019+) w/o Hall's theorem.

n
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Thank you!


