Real Zeros and the Alternatingly Increasing Property in Algebraic Combinatorics
 Based on joint work with P. Brändén (KTH)

Liam Solus

KTH Royal Institute of Technology
solus@kth.se
6 Augusti 2019
NORCOM
Schæffergården, Köpenhamn, Danmark

Mathematical Aspects of Computer and Information Sciences 2019 13 - 15 November 2019, Gebze-Istanbul, Turkey

http://macis2019.gtu.edu.tr/
Submit papers on combinatorics, designs, graphs, algorithms, codes, cryptography, etc!

Graphical Models: Conditional Independence and Algebraic Structures

 23 - 25 October 2019, Munich, Germany
https:
//www.groups.ma.tum.de/statistics/allgemeines/veranstaltungen/ graphical-models-conditional-independence-and-algebraic-structures/

Major results and open questions in algebraic and geometric combinatorics center around distributional properties of combinatorial generating polynomials:

$$
p:=p_{0}+p_{1} x+\cdots+p_{d} x^{d} \quad p_{k} \in \mathbb{Z}_{\geq 0}, \quad p_{d} \neq 0 .
$$

Major results and open questions in algebraic and geometric combinatorics center around distributional properties of combinatorial generating polynomials:

$$
p:=p_{0}+p_{1} x+\cdots+p_{d} x^{d} \quad p_{k} \in \mathbb{Z}_{\geq 0}, \quad p_{d} \neq 0 .
$$

- symmetry (w.r.t. m): $p_{k}=p_{m-k}$.
- unimodality: $p_{0} \leq p_{1} \leq \cdots \leq p_{t} \geq \cdots \geq p_{d-1} \geq p_{d}$.
- log-concavity: $p_{k}^{2} \geq p_{k+1} p_{k-1}$.

Major results and open questions in algebraic and geometric combinatorics center around distributional properties of combinatorial generating polynomials:

$$
p:=p_{0}+p_{1} x+\cdots+p_{d} x^{d} \quad p_{k} \in \mathbb{Z}_{\geq 0}, \quad p_{d} \neq 0 .
$$

- symmetry (w.r.t. m): $p_{k}=p_{m-k}$.
- unimodality: $p_{0} \leq p_{1} \leq \cdots \leq p_{t} \geq \cdots \geq p_{d-1} \geq p_{d}$.
- log-concavity: $p_{k}^{2} \geq p_{k+1} p_{k-1}$.
- γ-positivity: p symmetric with nonnegative coefficients γ_{k} in the basis

$$
p=\sum_{k=0}^{\lfloor d / 2\rfloor} \gamma_{k} x^{k}(x+1)^{d-2 k} .
$$

Major results and open questions in algebraic and geometric combinatorics center around distributional properties of combinatorial generating polynomials:

$$
p:=p_{0}+p_{1} x+\cdots+p_{d} x^{d} \quad p_{k} \in \mathbb{Z}_{\geq 0}, \quad p_{d} \neq 0 .
$$

- symmetry (w.r.t. m): $p_{k}=p_{m-k}$.
- unimodality: $p_{0} \leq p_{1} \leq \cdots \leq p_{t} \geq \cdots \geq p_{d-1} \geq p_{d}$.
- log-concavity: $p_{k}^{2} \geq p_{k+1} p_{k-1}$.
- γ-positivity: p symmetric with nonnegative coefficients γ_{k} in the basis

$$
p=\sum_{k=0}^{\lfloor d / 2\rfloor} \gamma_{k} x^{k}(x+1)^{d-2 k} .
$$

- real-rootedness: p has only real zeros.

Major results and open questions in algebraic and geometric combinatorics center around distributional properties of combinatorial generating polynomials:

$$
p:=p_{0}+p_{1} x+\cdots+p_{d} x^{d} \quad p_{k} \in \mathbb{Z}_{\geq 0}, \quad p_{d} \neq 0 .
$$

- symmetry (w.r.t. m): $p_{k}=p_{m-k}$.
- unimodality: $p_{0} \leq p_{1} \leq \cdots \leq p_{t} \geq \cdots \geq p_{d-1} \geq p_{d}$.
- log-concavity: $p_{k}^{2} \geq p_{k+1} p_{k-1}$.
- γ-positivity: p symmetric with nonnegative coefficients γ_{k} in the basis

$$
p=\sum_{k=0}^{\lfloor d / 2\rfloor} \gamma_{k} x^{k}(x+1)^{d-2 k} .
$$

- real-rootedness: p has only real zeros.

For example:

- (Strong) Mason's Theorem
[Anari, Liu, Gharan, Vinzant, 2018]
[Brändén, Huh, 2018]

Major results and open questions in algebraic and geometric combinatorics center around distributional properties of combinatorial generating polynomials:

$$
p:=p_{0}+p_{1} x+\cdots+p_{d} x^{d} \quad p_{k} \in \mathbb{Z}_{\geq 0}, \quad p_{d} \neq 0 .
$$

- symmetry (w.r.t. m): $p_{k}=p_{m-k}$.
- unimodality: $p_{0} \leq p_{1} \leq \cdots \leq p_{t} \geq \cdots \geq p_{d-1} \geq p_{d}$.
- log-concavity: $p_{k}^{2} \geq p_{k+1} p_{k-1}$.
- γ-positivity: p symmetric with nonnegative coefficients γ_{k} in the basis

$$
p=\sum_{k=0}^{\lfloor d / 2\rfloor} \gamma_{k} x^{k}(x+1)^{d-2 k} .
$$

- real-rootedness: p has only real zeros.

For example:

- (Strong) Mason's Theorem
- The g-Theorem for Simplicial Spheres
[Anari, Liu, Gharan, Vinzant, 2018]
[Brändén, Huh, 2018]
[Adiprasito, 2018]

Major results and open questions in algebraic and geometric combinatorics center around distributional properties of combinatorial generating polynomials:

$$
p:=p_{0}+p_{1} x+\cdots+p_{d} x^{d} \quad p_{k} \in \mathbb{Z}_{\geq 0}, \quad p_{d} \neq 0 .
$$

- symmetry (w.r.t. m): $p_{k}=p_{m-k}$.
- unimodality: $p_{0} \leq p_{1} \leq \cdots \leq p_{t} \geq \cdots \geq p_{d-1} \geq p_{d}$.
- log-concavity: $p_{k}^{2} \geq p_{k+1} p_{k-1}$.
- γ-positivity: p symmetric with nonnegative coefficients γ_{k} in the basis

$$
p=\sum_{k=0}^{\lfloor d / 2\rfloor} \gamma_{k} x^{k}(x+1)^{d-2 k} .
$$

- real-rootedness: p has only real zeros.

For example:

- (Strong) Mason's Theorem [Anari, Liu, Gharan, Vinzant, 2018]
[Brändén, Huh, 2018]
- The g-Theorem for Simplicial Spheres
- Gal's Conjecture for flag homology spheres
[Adiprasito, 2018] [you?, 2019+]

Major results and open questions in algebraic and geometric combinatorics center around distributional properties of combinatorial generating polynomials:

$$
p:=p_{0}+p_{1} x+\cdots+p_{d} x^{d} \quad p_{k} \in \mathbb{Z}_{\geq 0}, \quad p_{d} \neq 0 .
$$

- symmetry (w.r.t. m): $p_{k}=p_{m-k}$.
- unimodality: $p_{0} \leq p_{1} \leq \cdots \leq p_{t} \geq \cdots \geq p_{d-1} \geq p_{d}$.
- log-concavity: $p_{k}^{2} \geq p_{k+1} p_{k-1}$.
- γ-positivity: p symmetric with nonnegative coefficients γ_{k} in the basis

$$
p=\sum_{k=0}^{\lfloor d / 2\rfloor} \gamma_{k} x^{k}(x+1)^{d-2 k} .
$$

- real-rootedness: p has only real zeros.

For example:

- (Strong) Mason's Theorem [Anari, Liu, Gharan, Vinzant, 2018]
[Brändén, Huh, 2018]
- The g-Theorem for Simplicial Spheres
[Adiprasito, 2018]
- Gal's Conjecture for flag homology spheres [you?, 2019+]

New Property of Interest: Alternatingly Increasing (AI):

$$
0 \leq p_{0} \leq p_{d} \leq p_{1} \leq p_{d-1} \leq p_{2} \leq \cdots \leq p_{\left\lfloor\frac{d+1}{2}\right\rfloor}
$$

Symmetric Decompositions:

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

$$
\begin{array}{rl}
1+8 x+21 x^{2}+20 x^{3}+5 x^{4} & p \\
& a \\
& x b
\end{array}
$$

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

$$
\begin{array}{ll}
1+8 x+21 x^{2}+20 x^{3}+5 x^{4} & p \\
1 & a \\
& x b
\end{array}
$$

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

$$
\begin{array}{ll}
1+8 x+21 x^{2}+20 x^{3}+5 x^{4} & p \\
1 & +1 x^{4} \\
& a \\
& x b
\end{array}
$$

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

$$
\begin{array}{rll}
1+8 x+21 x^{2}+20 x^{3} & +5 x^{4} & p \\
1 & +1 x^{4} & a \\
& +4 x^{4} & x b
\end{array}
$$

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

$$
\begin{array}{rll}
1+8 x+21 x^{2}+20 x^{3} & +5 x^{4} & p \\
1 & +1 x^{4} & a \\
& +4 x^{4} & x b
\end{array}
$$

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

$$
\begin{array}{rll}
1+8 x+21 x^{2}+20 x^{3} & +5 x^{4} & p \\
1+4 x & +1 x^{4} & a \\
4 x & +4 x^{4} & x b
\end{array}
$$

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

$$
\begin{array}{rrl}
1+8 x+21 x^{2}+20 x^{3}+5 x^{4} & p \\
1+4 x & +4 x^{3}+1 x^{4} & a \\
4 x & +4 x^{4} & x b
\end{array}
$$

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

$$
\begin{array}{rrl}
1+8 x+21 x^{2} & +20 x^{3}+5 x^{4} & p \\
1+4 x & +4 x^{3}+1 x^{4} & a \\
4 x & +16 x^{3}+4 x^{4} & x b
\end{array}
$$

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

$$
\begin{array}{rl}
1+8 x+21 x^{2}+20 x^{3}+5 x^{4} & p \\
1+4 x+4 x^{3}+1 x^{4} & a \\
4 x+16 x^{2}+16 x^{3}+4 x^{4} & x b
\end{array}
$$

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

$$
\begin{array}{rl}
1+8 x+21 x^{2}+20 x^{3}+5 x^{4} & p \\
1+4 x+5 x^{2}+4 x^{3}+1 x^{4} & a \\
4 x+16 x^{2}+16 x^{3}+4 x^{4} & x b
\end{array}
$$

- (a, b) is the (symmetric) \mathcal{I}_{d}-decomposition of p.

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

$$
\begin{array}{rl}
1+8 x+21 x^{2}+20 x^{3}+5 x^{4} & p \\
1+4 x+5 x^{2}+4 x^{3}+1 x^{4} & a \\
4 x+16 x^{2}+16 x^{3}+4 x^{4} & x b
\end{array}
$$

- (a, b) is the (symmetric) \mathcal{I}_{d}-decomposition of p.
- a and b need not have nonnegative coefficients.

Symmetric Decompositions:

Lemma. Let $p \in \mathbb{R}[x]$ be of degree at most d. Then there exist unique polynomials $a, b \in \mathbb{R}[x]$ such that

- $p=a+x b$,
- $\operatorname{deg}(a) \leq d$, and a symmetric w.r.t. d,
- $\operatorname{deg}(b) \leq d-1$, and b symmetric w.r.t. $d-1$

$$
\begin{array}{rl}
1+8 x+21 x^{2}+20 x^{3}+5 x^{4} & p \\
1+4 x+5 x^{2}+4 x^{3}+1 x^{4} & a \\
4 x+16 x^{2}+16 x^{3}+4 x^{4} & x b
\end{array}
$$

- (a, b) is the (symmetric) \mathcal{I}_{d}-decomposition of p.
- a and b need not have nonnegative coefficients.
- p is AI if and only if a and b both unimodal with nonnegative coefficients.

Questions on Al and symmetric decompositions of polynomials are popping up in algebraic combinatorics!

Subdivisions of Simplices:
Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

Subdivisions of Simplices:

Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

Subdivisions of Simplices:

Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

Subdivisions of Simplices:

Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

Subdivisions of Simplices:
Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

Subdivisions of Simplices:
Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

Subdivisions of Simplices:
Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

Subdivisions of Simplices:
Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

Subdivisions of Simplices:
Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

Subdivisions of Simplices:
Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

$\Omega_{n, r}:=$ the $r^{\text {th }}$ edgewise subdivision of the barycentric subdivision of Δ_{n}.

Subdivisions of Simplices:
Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

$$
\ell_{d}(\Omega ; x):=\sum_{F \subset \Delta_{d}}(-1)^{d-\operatorname{dim}(F)} h\left(\left.\Omega\right|_{F} ; x\right)
$$

is the local h-polynomial of Ω.
$\Omega_{n, r}:=$ the $r^{\text {th }}$ edgewise subdivision of the barycentric subdivision of Δ_{n}.

Subdivisions of Simplices:
Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

$$
\ell_{d}(\Omega ; x):=\sum_{F \subset \Delta_{d}}(-1)^{d-\operatorname{dim}(F)} h\left(\left.\Omega\right|_{F} ; x\right)
$$

is the local h-polynomial of Ω.

- $\ell_{d}(\Omega ; x)$ is (often) symmetric w.r.t. $d+1$ with nonnegative coefficients.
$\Omega_{n, r}:=$ the $r^{\text {th }}$ edgewise subdivision of the barycentric subdivision of Δ_{n}.

Subdivisions of Simplices:
Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

$$
\ell_{d}(\Omega ; x):=\sum_{F \subset \Delta_{d}}(-1)^{d-\operatorname{dim}(F)} h\left(\left.\Omega\right|_{F} ; x\right)
$$

is the local h-polynomial of Ω.

- $\ell_{d}(\Omega ; x)$ is (often) symmetric w.r.t. $d+1$ with nonnegative coefficients.
- $\ell_{d}(\Omega ; x)$ is unimodal when Ω is a regular subdivision.
$\Omega_{n, r}:=$ the $r^{\text {th }}$ edgewise subdivision of the barycentric subdivision of Δ_{n}.

Subdivisions of Simplices:
Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

$$
\ell_{d}(\Omega ; x):=\sum_{F \subset \Delta_{d}}(-1)^{d-\operatorname{dim}(F)} h\left(\left.\Omega\right|_{F} ; x\right)
$$

is the local h-polynomial of Ω.

- $\ell_{d}(\Omega ; x)$ is (often) symmetric w.r.t. $d+1$ with nonnegative coefficients.
- $\ell_{d}(\Omega ; x)$ is unimodal when Ω is a regular subdivision.
- When is $\ell_{d}(\Omega: x)$ further γ-positive?
$\Omega_{n, r}:=$ the $r^{\text {th }}$ edgewise subdivision of the barycentric subdivision of Δ_{n}.

Subdivisions of Simplices:
Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex Δ_{d}.

is the local h-polynomial of Ω.

- $\ell_{d}(\Omega ; x)$ is (often) symmetric w.r.t. $d+1$ with nonnegative coefficients.
- $\ell_{d}(\Omega ; x)$ is unimodal when Ω is a regular subdivision.
- When is $\ell_{d}(\Omega: x)$ further γ-positive?
$\Omega_{n, r}:=$ the $r^{\text {th }}$ edgewise subdivision of the barycentric subdivision of Δ_{n}.
Question (Athanasiadis). Is $\ell_{n}\left(\Omega_{n, r} ; x\right) \gamma$-positive?

Subdivisions of Simplices:
Answer: Yes, via a combinatorial proof:

Subdivisions of Simplices:
Answer: Yes, via a combinatorial proof:

$$
d_{n, r}:=\sum_{(\pi, c) \in \mathcal{D}_{n, r}} x^{\operatorname{exc}(\pi, c)},
$$

the $n^{\text {th }}$ colored derangement polynomial:

Subdivisions of Simplices:
Answer: Yes, via a combinatorial proof:

$$
d_{n, r}:=\sum_{(\pi, c) \in \mathcal{D}_{n, r}} x^{\operatorname{exc}(\pi, c)},
$$

the $n^{\text {th }}$ colored derangement polynomial:

- $\mathcal{D}_{n, r}$ is all colored derangements:

$$
(\pi, c) \sim \pi_{1}^{c_{1}} \pi_{2}^{c_{2}} \cdots \pi_{n}^{c_{n}}
$$

where $c_{k} \in\{0,1, \ldots, r-1\}$, and $\pi_{i} \neq i$ if $c_{i}=0$.

Subdivisions of Simplices:
Answer: Yes, via a combinatorial proof:

$$
d_{n, r}:=\sum_{(\pi, c) \in \mathcal{D}_{n, r}} x^{\operatorname{exc}(\pi, c)}
$$

the $n^{\text {th }}$ colored derangement polynomial:

- $\mathcal{D}_{n, r}$ is all colored derangements:

$$
(\pi, c) \sim \pi_{1}^{c_{1}} \pi_{2}^{c_{2}} \cdots \pi_{n}^{c_{n}}
$$

where $c_{k} \in\{0,1, \ldots, r-1\}$, and $\pi_{i} \neq i$ if $c_{i}=0$.

$$
\operatorname{exc}(\pi, c):=\left|\left\{k \in[n]: \pi_{k} \geq k\right\}\right|
$$

Subdivisions of Simplices:
Answer: Yes, via a combinatorial proof:

$$
d_{n, r}:=\sum_{(\pi, c) \in \mathcal{D}_{n, r}} x^{\operatorname{exc}(\pi, c)},
$$

the $n^{\text {th }}$ colored derangement polynomial:

- $\mathcal{D}_{n, r}$ is all colored derangements:

$$
(\pi, c) \sim \pi_{1}^{c_{1}} \pi_{2}^{c_{2}} \cdots \pi_{n}^{c_{n}}
$$

where $c_{k} \in\{0,1, \ldots, r-1\}$, and $\pi_{i} \neq i$ if $c_{i}=0$.

$$
\operatorname{exc}(\pi, c):=\left|\left\{k \in[n]: \pi_{k} \geq k\right\}\right|
$$

Theorem (Athanasiadis, 2014). If (a, b) is the symmetric \mathcal{I}_{n}-decomposition of $d_{n, r}$ then a and b are γ-positive and $a=\ell_{n}\left(\Omega_{n, r} ; x\right)$.

Subdivisions of Simplices:
Answer: Yes, via a combinatorial proof:

$$
d_{n, r}:=\sum_{(\pi, c) \in \mathcal{D}_{n, r}} x^{\operatorname{exc}(\pi, c)},
$$

the $n^{\text {th }}$ colored derangement polynomial:

- $\mathcal{D}_{n, r}$ is all colored derangements:

$$
(\pi, c) \sim \pi_{1}^{c_{1}} \pi_{2}^{c_{2}} \cdots \pi_{n}^{c_{n}}
$$

where $c_{k} \in\{0,1, \ldots, r-1\}$, and $\pi_{i} \neq i$ if $c_{i}=0$.

$$
\operatorname{exc}(\pi, c):=\left|\left\{k \in[n]: \pi_{k} \geq k\right\}\right| .
$$

Theorem (Athanasiadis, 2014). If (a, b) is the symmetric \mathcal{I}_{n}-decomposition of $d_{n, r}$ then a and b are γ-positive and $a=\ell_{n}\left(\Omega_{n, r} ; x\right)$.

Note: If p is symmetric and real-rooted then p is γ-positive.

Subdivisions of Simplices:
Answer: Yes, via a combinatorial proof:

$$
d_{n, r}:=\sum_{(\pi, c) \in \mathcal{D}_{n, r}} x^{\operatorname{exc}(\pi, c)},
$$

the $n^{\text {th }}$ colored derangement polynomial:

- $\mathcal{D}_{n, r}$ is all colored derangements:

$$
(\pi, c) \sim \pi_{1}^{c_{1}} \pi_{2}^{c_{2}} \cdots \pi_{n}^{c_{n}}
$$

where $c_{k} \in\{0,1, \ldots, r-1\}$, and $\pi_{i} \neq i$ if $c_{i}=0$.

$$
\operatorname{exc}(\pi, c):=\left|\left\{k \in[n]: \pi_{k} \geq k\right\}\right| .
$$

Theorem (Athanasiadis, 2014). If (a, b) is the symmetric \mathcal{I}_{n}-decomposition of $d_{n, r}$ then a and b are γ-positive and $a=\ell_{n}\left(\Omega_{n, r} ; x\right)$.

Note: If p is symmetric and real-rooted then p is γ-positive.
Conjecture (Athanasiadis; 2017). a and b are also real-rooted.

Ehrhart Theory:
$P \subset \mathbb{R}^{n}$ a d-dimensional lattice polytope.

Ehrhart Theory:
$P \subset \mathbb{R}^{n}$ a d-dimensional lattice polytope.

$$
k P:=\left\{k p \in \mathbb{R}^{n}: p \in P\right\} .
$$

Ehrhart Theory:

$P \subset \mathbb{R}^{n}$ a d-dimensional lattice polytope.

$$
k P:=\left\{k p \in \mathbb{R}^{n}: p \in P\right\} .
$$

$$
A_{k}:=\operatorname{span}_{\mathbb{C}}\left\{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} t^{k} \in \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}, t\right]:\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in k P \cap \mathbb{Z}^{n}\right\}
$$

Ehrhart Theory:
$P \subset \mathbb{R}^{n}$ a d-dimensional lattice polytope.

$$
k P:=\left\{k p \in \mathbb{R}^{n}: p \in P\right\} .
$$

$$
A_{k}:=\operatorname{span}_{\mathbb{C}}\left\{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} t^{k} \in \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}, t\right]:\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in k P \cap \mathbb{Z}^{n}\right\}
$$

The Ehrhart ring of P :

$$
A_{P}:=\bigoplus_{k=0}^{\infty} A_{k} \quad A_{0}:=\mathbb{C} .
$$

Ehrhart Theory:

$P \subset \mathbb{R}^{n}$ a d-dimensional lattice polytope.
$k P:=\left\{k p \in \mathbb{R}^{n}: p \in P\right\}$.

$$
A_{k}:=\operatorname{span}_{\mathbb{C}}\left\{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} t^{k} \in \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}, t\right]:\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in k P \cap \mathbb{Z}^{n}\right\}
$$

The Ehrhart ring of P :

$$
A_{P}:=\bigoplus_{k=0}^{\infty} A_{k} \quad A_{0}:=\mathbb{C} .
$$

If we consider the Hilbert series

$$
1+\sum_{k>0} \operatorname{dim}_{\mathbb{C}}\left(A_{k}\right) x^{k}=\frac{h^{*}(P ; x)}{(1-x)^{d+1}}
$$

then $h^{*}(P ; x)$ is called the h^{*}-polynomial of P.

Ehrhart Theory:

$P \subset \mathbb{R}^{n}$ a d-dimensional lattice polytope.
$k P:=\left\{k p \in \mathbb{R}^{n}: p \in P\right\}$.

$$
A_{k}:=\operatorname{span}_{\mathbb{C}}\left\{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} t^{k} \in \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}, t\right]:\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in k P \cap \mathbb{Z}^{n}\right\}
$$

The Ehrhart ring of P :

$$
A_{P}:=\bigoplus_{k=0}^{\infty} A_{k} \quad A_{0}:=\mathbb{C}
$$

If we consider the Hilbert series

$$
1+\sum_{k>0} \operatorname{dim}_{\mathbb{C}}\left(A_{k}\right) x^{k}=\frac{h^{*}(P ; x)}{(1-x)^{d+1}}
$$

then $h^{*}(P ; x)$ is called the h^{*}-polynomial of P.
Conjecture (Stanley, 1989; Hibi and Ohsugi, 2001; etc...). If A_{P} is integrally closed then $h^{*}(P ; x)$ is unimodal.

Ehrhart Theory:
Theorem (Schepers and Van Langenhoven, 2013). $h^{*}(P ; x)$ is unimodal whenever P is a parallelepiped. Moreover, if P contains interior lattice points then $h^{*}(P ; x)$ is AI.

Ehrhart Theory:
Theorem (Schepers and Van Langenhoven, 2013). $h^{*}(P ; x)$ is unimodal whenever P is a parallelepiped. Moreover, if P contains interior lattice points then $h^{*}(P ; x)$ is AI.

Ehrhart Theory:
Theorem (Schepers and Van Langenhoven, 2013). $h^{*}(P ; x)$ is unimodal whenever P is a parallelepiped. Moreover, if P contains interior lattice points then $h^{*}(P ; x)$ is AI.

Question (Schepers and Van Langenhoven, 2013). If A_{P} is integrally closed and P contains interior lattice points then is $h^{*}(P ; x)$ AI?

Ehrhart Theory:
Theorem (Schepers and Van Langenhoven, 2013). $h^{*}(P ; x)$ is unimodal whenever P is a parallelepiped. Moreover, if P contains interior lattice points then $h^{*}(P ; x)$ is AI.

Question (Schepers and Van Langenhoven, 2013). If A_{P} is integrally closed and P contains interior lattice points then is $h^{*}(P ; x) \mathrm{Al}$?

- (Beck, Jochemko, McCullough, 2016). Yes, for centrally symmetric lattice zonotopes.

Ehrhart Theory:
Theorem (Schepers and Van Langenhoven, 2013). $h^{*}(P ; x)$ is unimodal whenever P is a parallelepiped. Moreover, if P contains interior lattice points then $h^{*}(P ; x)$ is AI.

Question (Schepers and Van Langenhoven, 2013). If A_{P} is integrally closed and P contains interior lattice points then is $h^{*}(P ; x)$ AI?

- (Beck, Jochemko, McCullough, 2016). Yes, for centrally symmetric lattice zonotopes.

Conjecture (Beck et al., 2016). True for all lattice zonotopes?

Real Zeros and Two Theorems on AI:

Real Zeros and Two Theorems on AI:

$p, q \in \mathbb{R}[x]$ with only real zeros

$$
\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{d} \text { and } \beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{m}
$$

respectively.

Real Zeros and Two Theorems on AI:
$p, q \in \mathbb{R}[x]$ with only real zeros

$$
\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{d} \text { and } \beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{m}
$$

respectively.

$$
q \prec p \text { if } \alpha_{1} \geq \beta_{1} \geq \alpha_{2} \geq \beta_{2} \cdots
$$

Real Zeros and Two Theorems on AI:
$p, q \in \mathbb{R}[x]$ with only real zeros

$$
\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{d} \text { and } \beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{m}
$$

respectively.

$$
q \prec p \text { if } \alpha_{1} \geq \beta_{1} \geq \alpha_{2} \geq \beta_{2} \cdots
$$

Real Zeros and Two Theorems on AI:

$p, q \in \mathbb{R}[x]$ with only real zeros

$$
\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{d} \text { and } \beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{m}
$$

respectively.

$$
q \prec p \text { if } \alpha_{1} \geq \beta_{1} \geq \alpha_{2} \geq \beta_{2} \cdots .
$$

Note: To show p is AI we can show $b \prec a$.

Real Zeros and Two Theorems on AI:

$p, q \in \mathbb{R}[x]$ with only real zeros

$$
\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{d} \text { and } \beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{m}
$$

respectively.
$q \prec p$ if $\alpha_{1} \geq \beta_{1} \geq \alpha_{2} \geq \beta_{2} \cdots$.
Note: To show p is Al we can show $b \prec a$.

Theorem (Brändén, LS; 2019). If p has \mathcal{I}_{d}-decomposition (a, b) such that both a and b have only nonnegative coefficients then the following are equivalent:
(1) $b \prec a$
(2) $a \prec p$
(3) $b \prec p$
(4) $x^{d} p(1 / x) \prec p$

Real Zeros and Two Theorems on AI:

$p, q \in \mathbb{R}[x]$ with only real zeros

$$
\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{d} \text { and } \beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{m}
$$

respectively.
$q \prec p$ if $\alpha_{1} \geq \beta_{1} \geq \alpha_{2} \geq \beta_{2} \cdots$.
Note: To show p is Al we can show $b \prec a$.

Theorem (Brändén, LS; 2019). If p has \mathcal{I}_{d}-decomposition (a, b) such that both a and b have only nonnegative coefficients then the following are equivalent:
(1) $b \prec a$
(2) $a \prec p$
(3) $b \prec p$
(4) $x^{d} p(1 / x) \prec p$

Corollary. $b \prec a$ for (a, b) the \mathcal{I}_{d}-decomposition of $d_{n, r}$.

Real Zeros and Two Theorems on AI:

Real Zeros and Two Theorems on AI:

Theorem (Brändén, LS; 2019). Let

$$
i=\sum_{k=0}^{d} c_{k} x^{k}(x+1)^{d-k}
$$

with $c_{k} \geq 0$ and let

$$
1+\sum_{m>0} i(m) x^{m}=\frac{h(x)}{(1-x)^{d+1}} .
$$

If

$$
c_{0}+\cdots+c_{j} \leq c_{d}+\cdots+c_{d-j}
$$

for $0 \leq j \leq d / 2$, then both a and b in the \mathcal{I}_{d}-decomposition (a, b) of h are real-rooted.

Real Zeros and Two Theorems on AI:

Theorem (Brändén, LS; 2019). Let

$$
i=\sum_{k=0}^{d} c_{k} x^{k}(x+1)^{d-k}
$$

with $c_{k} \geq 0$ and let

$$
1+\sum_{m>0} i(m) x^{m}=\frac{h(x)}{(1-x)^{d+1}} .
$$

If

$$
c_{0}+\cdots+c_{j} \leq c_{d}+\cdots+c_{d-j}
$$

for $0 \leq j \leq d / 2$, then both a and b in the \mathcal{I}_{d}-decomposition (a, b) of h are real-rooted.
(Dall; 2015) showed that when h is the h^{*}-polynomial of a lattice zonotope, the coefficients c_{k} are the coefficients of the h^{*}-polynomial of a Lawrence polytope.

Real Zeros and Two Theorems on AI:

Theorem (Brändén, LS; 2019). Let

$$
i=\sum_{k=0}^{d} c_{k} x^{k}(x+1)^{d-k}
$$

with $c_{k} \geq 0$ and let

$$
1+\sum_{m>0} i(m) x^{m}=\frac{h(x)}{(1-x)^{d+1}} .
$$

If

$$
c_{0}+\cdots+c_{j} \leq c_{d}+\cdots+c_{d-j}
$$

for $0 \leq j \leq d / 2$, then both a and b in the \mathcal{I}_{d}-decomposition (a, b) of h are real-rooted.
(Dall; 2015) showed that when h is the h^{*}-polynomial of a lattice zonotope, the coefficients c_{k} are the coefficients of the h^{*}-polynomial of a Lawrence polytope.

Corollary. If P is a lattice zonotope with interior lattice points then $h^{*}(P ; x)$ is AI. In fact both a and b in the \mathcal{I}_{d}-decomposition of $h^{*}(P ; x)$ are real-rooted.

Thank you for listening!

Please check out our paper:

- P. Brändén and L. Solus. Symmetric decompositions and real-rootedness. To appear in International Mathematics Research Notices IMRN (2019).

