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Major results and open questions in algebraic and geometric combinatorics center
around distributional properties of combinatorial generating polynomials:

p := p0 + p1x + · · ·+ pdx
d pk ∈ Z≥0, pd 6= 0.

symmetry (w.r.t. m): pk = pm−k .
unimodality: p0 ≤ p1 ≤ · · · ≤ pt ≥ · · · ≥ pd−1 ≥ pd .
log-concavity: p2

k ≥ pk+1pk−1.
γ-positivity: p symmetric with nonnegative coefficients γk in the basis

p =

bd/2c∑
k=0

γkx
k(x + 1)d−2k .

real-rootedness: p has only real zeros.

For example:
(Strong) Mason’s Theorem [Anari, Liu, Gharan, Vinzant, 2018]

[Brändén, Huh, 2018]
The g -Theorem for Simplicial Spheres [Adiprasito, 2018]
Gal’s Conjecture for flag homology spheres [you?, 2019+]

New Property of Interest: Alternatingly Increasing (AI):

0 ≤ p0 ≤ pd ≤ p1 ≤ pd−1 ≤ p2 ≤ · · · ≤ pb d+1
2 c
.
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Symmetric Decompositions:

Lemma. Let p ∈ R[x ] be of degree at most d . Then there exist unique
polynomials a, b ∈ R[x ] such that

p = a + xb,

deg(a) ≤ d , and a symmetric w.r.t. d ,

deg(b) ≤ d − 1, and b symmetric w.r.t. d − 1

1 + 8x +21x2 +20x3 +5x4 p

1 + 4x + 5x2 + 4x3 + 1x4 a

4x + 16x2 + 16x3 + 4x4 xb

(a, b) is the (symmetric) Id -decomposition of p.

a and b need not have nonnegative coefficients.

p is AI if and only if a and b both unimodal with nonnegative coefficients.

Questions on AI and symmetric decompositions of polynomials are popping up in
algebraic combinatorics!
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Subdivisions of Simplices:

Let Ω be a d-dimensional simplicial complex that subdivides the d-simplex ∆d .

barycentric

subdivision

3rd edgewise

subdivision

`d(Ω; x) :=
∑
F⊂∆d

(−1)d−dim(F )h(Ω|F ; x)

is the local h-polynomial of Ω.

`d(Ω; x) is (often) symmetric w.r.t. d + 1 with nonnegative coefficients.

`d(Ω; x) is unimodal when Ω is a regular subdivision.

When is `d(Ω : x) further γ-positive?

Ωn,r := the r th edgewise subdivision of the barycentric subdivision of ∆n.

Question (Athanasiadis). Is `n(Ωn,r ; x) γ-positive?
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Subdivisions of Simplices:

Answer: Yes, via a combinatorial proof:

dn,r :=
∑

(π,c)∈Dn,r

xexc(π,c),

the nth colored derangement polynomial:

Dn,r is all colored derangements:

(π, c) ∼ πc1
1 π

c2
2 · · ·π

cn
n ,

where ck ∈ {0, 1, . . . , r − 1}, and πi 6= i if ci = 0.

exc(π, c) := |{k ∈ [n] : πk ≥ k}| .

Theorem (Athanasiadis, 2014). If (a, b) is the symmetric In-decomposition of
dn,r then a and b are γ-positive and a = `n(Ωn,r ; x).

Note: If p is symmetric and real-rooted then p is γ-positive.

Conjecture (Athanasiadis; 2017). a and b are also real-rooted.
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Ehrhart Theory:

P ⊂ Rn a d-dimensional lattice polytope.

kP := {kp ∈ Rn : p ∈ P}.

Ak := spanC
{
xα1

1 · · · x
αn
n tk ∈ C[x±1 , . . . , x

±
n , t] : (α1, . . . , αn) ∈ kP ∩ Zn

}
The Ehrhart ring of P:

AP :=
∞⊕
k=0

Ak A0 := C.

If we consider the Hilbert series

1 +
∑
k>0

dimC(Ak)xk =
h∗(P; x)

(1− x)d+1
,

then h∗(P; x) is called the h∗-polynomial of P.

Conjecture (Stanley, 1989; Hibi and Ohsugi, 2001; etc...). If AP is integrally
closed then h∗(P; x) is unimodal.
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Theorem (Schepers and Van Langenhoven, 2013). h∗(P; x) is unimodal
whenever P is a parallelepiped. Moreover, if P contains interior lattice points
then h∗(P; x) is AI.

Question (Schepers and Van Langenhoven, 2013). If AP is integrally closed
and P contains interior lattice points then is h∗(P; x) AI?

(Beck, Jochemko, McCullough, 2016). Yes, for centrally symmetric lattice
zonotopes.

Conjecture (Beck et al., 2016). True for all lattice zonotopes?
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Real Zeros and Two Theorems on AI:

p, q ∈ R[x ] with only real zeros

α1 ≥ α2 ≥ . . . ≥ αd and β1 ≥ β2 ≥ . . . ≥ βm,

respectively.

q ≺ p if α1 ≥ β1 ≥ α2 ≥ β2 · · · .

Note: To show p is AI we can show b ≺ a.

Theorem (Brändén, LS; 2019). If p has Id -decomposition (a, b) such that both
a and b have only nonnegative coefficients then the following are equivalent:

1 b ≺ a

2 a ≺ p

3 b ≺ p

4 xdp(1/x) ≺ p

Corollary. b ≺ a for (a, b) the Id -decomposition of dn,r .
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Theorem (Brändén, LS; 2019). If p has Id -decomposition (a, b) such that both
a and b have only nonnegative coefficients then the following are equivalent:

1 b ≺ a

2 a ≺ p

3 b ≺ p

4 xdp(1/x) ≺ p

Corollary. b ≺ a for (a, b) the Id -decomposition of dn,r .



Real Zeros and Two Theorems on AI:

Theorem (Brändén, LS; 2019). Let

i =
d∑

k=0

ckx
k(x + 1)d−k

with ck ≥ 0 and let

1 +
∑
m>0

i(m)xm =
h(x)

(1− x)d+1
.

If
c0 + · · ·+ cj ≤ cd + · · ·+ cd−j

for 0 ≤ j ≤ d/2, then both a and b in the Id -decomposition (a, b) of h are
real-rooted.

(Dall; 2015) showed that when h is the h∗-polynomial of a lattice zonotope, the
coefficients ck are the coefficients of the h∗-polynomial of a Lawrence polytope.

Corollary. If P is a lattice zonotope with interior lattice points then h∗(P; x) is
AI. In fact both a and b in the Id -decomposition of h∗(P; x) are real-rooted.
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Thank you for listening!

Please check out our paper:

P. Brändén and L. Solus. Symmetric decompositions and real-rootedness. To appear in International
Mathematics Research Notices IMRN (2019).


