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New Property of Interest: Alternatingly Increasing (Al):
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(a, b) is the (symmetric) Z,-decomposition of p.
a and b need not have nonnegative coefficients.
pis Al if and only if a and b both unimodal with nonnegative coefficients.
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Questions on Al and symmetric decompositions of polynomials are popping up in
algebraic combinatorics! J
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is the local h-polynomial of Q.
o £4(Q; x) is (often) symmetric w.r.t. d + 1 with nonnegative coefficients.
o £4(%; x) is unimodal when Q is a regular subdivision.
o When is £4(S : x) further y-positive?

Qp,, = the rth edgewise subdivision of the barycentric subdivision of A,,.

Question (Athanasiadis). Is £,(Q2,.,; x) v-positive?
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o D, . is all colored derangements:
(m,¢) ~ w2 myr

n>o

where ¢, € {0,1,...,r—1}, and m; £ i if ¢ =0.
exc(m, c) = |{k € [n] : 7k > k}|.

Theorem (Athanasiadis, 2014). If (a, b) is the symmetric Z,,-decomposition of
dp,r then a and b are -positive and a = £,(Q2,,,; ).

Note: If p is symmetric and real-rooted then p is -positive.

Conjecture (Athanasiadis; 2017). a and b are also real-rooted.
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Conjecture (Stanley, 1989; Hibi and Ohsugi, 2001; etc...). If Ap is integrally
closed then h*(P; x) is unimodal.
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whenever P is a parallelepiped. Moreover, if P contains interior lattice points

then h*(P; x) is Al.

Question (Schepers and Van Langenhoven, 2013). If Ap is integrally closed
and P contains interior lattice points then is h*(P; x) Al?

o (Beck, Jochemko, McCullough, 2016). Yes, for centrally symmetric lattice
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Conjecture (Beck et al., 2016). True for all lattice zonotopes? J
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p, g € R[x] with only real zeros

ar>a> ... >agand B > Bo > ... > B, m

respectively.

g=pifar>p1>ax> .

Note: To show p is Al we can show b < a.

Theorem (Brandén, LS; 2019). If p has Z,-decomposition (a, b) such that both
a and b have only nonnegative coefficients then the following are equivalent:

@ b=<a
@ a=<p
@ b=<p
@ x9p(1/x) < p

Corollary. b < a for (a, b) the Zy-decomposition of d, ,.
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Real Zeros and Two Theorems on Al:

Theorem (Brandén, LS; 2019). Let

d
i = Z ckxk(x + 1)d_k
k=0

with ¢, > 0 and let
h(x)
L Y il = P
m>0
ot ---t¢<cg+t--+cij

for 0 < j < d/2, then both a and b in the Z,-decomposition (a, b) of h are
real-rooted.

(Dall; 2015) showed that when h is the h*-polynomial of a lattice zonotope, the
coefficients ¢, are the coefficients of the h*-polynomial of a Lawrence polytope.

Corollary. If P is a lattice zonotope with interior lattice points then h*(P; x) is
Al. In fact both a and b in the Z;-decomposition of h*(P; x) are real-rooted.



Thank you for listening!

Please check out our paper:

@ P. Brdandén and L. Solus. Symmetric decompositions and real-rootedness. To appear in International
Mathematics Research Notices IMRN (2019).



