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Part 1:

Affine roots counted without multiplicity. The
footprint bound mainly applied to Cartesian product
point sets
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Why polynomials?

When working over finite fields all functions are polynomials.

Lagrange interpolation:

F : Fm
q → Fn

q is defined by its qm values.

Given ~α = (α1, . . . , αm) the polynomial∏m
i=1

∏
β∈Fq\{αi}(Xi − β)∏m

i=1

∏
β∈Fq\{αi}(αi − β)

evaluates to 1 in ~α and to 0 every where else.

Take proper “linear” combinations of terms of above type.
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F : F2
3 → F3 given by

F (0, 0) = 2 F (0, 1) = 1 F (0, 2) = 1
F (1, 0) = 0 F (1, 1) = 1 F (1, 2) = 0
F (2, 0) = 1 F (2, 1) = 1 F (2, 2) = 2

As a polynomial:

F (X ,Y ) =

(X − 1)(X − 2)(Y − 1)(Y − 2)

(0− 1)(0− 2)(0− 1)(0− 2)
2+

(X − 1)(X − 2)(Y − 0)(Y − 2)

(0− 1)(0− 2)(1− 0)(1− 2)
1+· · ·

+
(X − 0)(X − 1)(Y − 0)(Y − 2)

(2− 0)(2− 1)(1− 0)(1− 2)
1 +

(X − 0)(X − 1)(Y − 0)(Y − 1)

(2− 0)(2− 1)(2− 0)(2− 1)
2

= 2XY + 2Y 2 + X + 2

(In general
2XY + 2Y 2 + X + 2 + A(X ,Y )(X 3 − X ) + B(X ,Y )(Y 3 − Y )
works)
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Restricting to powers less than q

F (X1, . . . ,Xm) ∈ Fq[X1, . . . ,Xm] has the same function values
(and in particular roots) as

F (X1, . . . ,Xm)+
A1(X1, . . . ,Xm)(X q

1 − X1) + · · ·+ Am(X1, . . . ,Xm)(X q
m − Xm).

Therefore F (X1, . . . ,Xm) has the same function values as
F (X1, . . . ,Xm) rem {X q

1 − X1, . . . ,X
q
m − Xm}.

Hence, as long as we are only interested in roots and do not count
multiplicity we may restrict to:

degXi
(F ) < q for i = 1, . . . ,m.
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From one variable to more

F (X ) ∈ F[X ] has at most deg F roots over F (even when counted
with multiplicity).

How to generalize to more variables?

F (X ,Y ) ∈ R[X ,Y ] most probably has infinitely many roots.

Example: XY + 2 has the roots {(k ,− 2
k ) | k ∈ R\{0}}.

But if we are only looking for roots of
F (X1, . . . ,Xm) ∈ F[X1, . . . ,Xm] over finite set S1 × · · · × Sm,
Si ∈ F then finitely many roots.

...or if F = Fq then again finitely many roots.
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Roots over finite sets

X q − X =
∏
α∈Fq

(X − α). Hence, to look for roots of

F (X1, . . . ,Xm) over Fq corresponds to looking for common roots of

{F (X1, . . . ,Xm),X q
1 − X1, . . . ,X

q
m − Xm}

If we look for roots over finite set S1 × · · · × Sm, Si ⊆ F we look
for common roots ofF (X1, . . . ,Xm),

∏
α∈S1

(X1 − α), . . . ,
∏
α∈Sm

(Xm − α)

 .
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The polynomial F (X ,Y ) = X 2Y + Y 2 + 2 over F5

To look for roots of F (X ,Y ) over F5 corresponds to looking for
common roots of {F (X ,Y ),X 5 − X ,Y 5 − Y }.

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗ ∗
· · · · · ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
· · · · · ∗ ∗
· · · · · ∗ ∗

Figure: Two choices: lm(F ) = X 2Y or lm(F ) = Y 2. Number of roots at
most min{13, 10} = 10
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Univariate polynomials – revisited

How many roots can F (X ) = X 2 + aX + b have over F5?

In other words what is the maximal number of common roots of of
{X 2 + aX + b,X 5 − X}?.

· · ∗ ∗ ∗ ∗ ∗

Figure: An alternative way to “see” the well-known result that a degree d
univariate polynomial can have at most d roots
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The footprint

Monomial ordering is a total ordering such that

I 1 is the smallest monomial

I multiplication of monomials respects the ordering.

For two (or more) variables there are infinitely many monomial
orderings. For one variable only one.

Given an ideal I ⊆ F[X1, . . . ,Xm] and a monomial ordering ≺ the
footprint is

∆≺(I ) = {X i1
1 · · ·X

im
m | X

i1
1 · · ·X

im
m is not a leading monomial

of any polynomial in I}
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F (X ,Y ) = X 2Y + Y 2 + 2 over F5 – revisited

I = 〈X 2Y + Y 2 + 2,X 5 − X ,Y 5 − Y 〉 =
{K1(X ,Y )(X 2Y+Y 2+2)+K2(X ,Y )(X 5−X )+K3(X ,Y )(Y 5−Y ) |

K1,K2,K3 ∈ F5[X ,Y ]}

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗ ∗
· · · · · ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
· · · · · ∗ ∗
· · · · · ∗ ∗

Figure: Two choices: lm(F ) = X 2Y or lm(F ) = Y 2. What we estimated
is the size of the footprint ∆≺(I )!!!
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The footprint bound

Theorem: Let I ⊆ F[X1, . . . ,Xm] be an ideal. Then
{M + I | M ∈ ∆≺(I )} constitutes a basis for F[X1, . . . ,Xm]/I as a
vector space over F

Theorem (footprint bound): The number of roots of a
zero-dimensional ideal I is at most equal to the size of the
footprint ∆≺(I ).

Equality holds if the field is perfect and if the ideal contains a
univariate square-free polynomial in each variable.

For instance equality holds if the field is Fq and I contains
X q
1 − X1, . . . ,X

q
m − Xm.

We are often only occupied with estimating the size of the
footprint, but sometimes we need to actually determine it.
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When we only know the leading monomial

Let lm(F ) = X i1
1 · · ·X im

m and consider S = S1 × · · · × Sm with
s1 = #S1, . . . , sm = #Sm. We may assume
degX1

F < s1, . . . , degXm
F < sm.

F has at most s1 · · · sm − (s1 − i1) · · · (sm − im) roots.

20 21 22 23 24
15 17 19 21 23
10 13 16 19 22
5 9 13 17 21
0 5 10 15 20

Figure: Maximal number of roots over F5 of bivariate polynomials
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Upper bound is attainable

Consider S1 = {α1, . . . , αs1}, S2 = {β1, . . . , βs2} and 0 ≤ i1 < s1,
0 ≤ i2 < s2.

The polynomial ( i1∏
r=1

(X − αr )

)( i2∏
t=1

(Y − βt)
)

has exactly (s1 − i1)(s2 − i2) non-roots. Hence,
s1s2 − (s1 − i1)(s2 − i2) roots.

Generalizes to any finite Cartesian product.
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Only knowing the total degree

20 21 22 23 24
15 17 19 21 23
10 13 16 19 22
5 9 13 17 21
0 5 10 15 20

Figure: Maximal number of roots over F5 of bivariate polynomials

Worst case is on the border.
Schwartz-Zippel bound
Consider a polynomial F (X1, . . . ,Xm) over Fq of total degree d
less than q. The number of roots is at most dqm−1.

Remark, that X q
1 − X1 has all elements of Fm

q as roots.
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Error-correcting codes

Communication through noisy channel over F3:
~c = (2, 0, 1, 2, 1, 1, 0) (injected into channel)
~e = (1, 2, 0, 0, 0, 0, 0) (error)
~r = ~c + ~e = (0, 2, 1, 2, 1, 1, 0) (output from channel)
Two errors occurred: wH(~e) = 2

Protection through use of error-correcting code C :
C ⊆ Fn

q dimC = k . Message space Fk
q

Let {~g1, . . . , ~gk} be a basis for C Encoding: ~m

 ~g1
...
~gk

 = ~c .

d = min dist = min{wH(~c | ~c ∈ C\{~0}}
Using a minimum distance decoder we can correct bd−12 c errors.
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Let {~g1, . . . , ~gk} be a basis for C Encoding: ~m

 ~g1
...
~gk

 = ~c .

d = min dist = min{wH(~c | ~c ∈ C\{~0}}
Using a minimum distance decoder we can correct bd−12 c errors.
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Reed-Muller codes and hyperbolic codes

Write Fm
q = {P1, . . . ,Pn=qm}.

RMq(s,m) =
{(F (P1), . . . ,F (Pn)) | F ∈ Fq[X1, . . . ,Xm], deg(F ) ≤ s}

In the above definition we may assume degXi
(F ) < q. The

dimension equals the number of such monomials of total degree
less than or equal to s.

Hyperbolic codes are improvements where we take full advantage
of the footprint bound. This allows us to increase the dimension
without lowering the minimum distance.
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Reed-Muller codes versus Hyperbolic codes over F7

ev : F7[X ,Y ]→ F49
7 given by ev(F ) =

(
F (P1), . . . ,F (P49)

)
42 43 44 45 46 47 48 7 6 5 4 3 2 1

35 37 39 41 43 45 47 14 12 10 8 6 4 2

28 31 34 37 40 43 46 21 18 15 12 9 6 3

21 25 29 33 37 41 45 28 24 20 16 12 8 4

14 19 24 29 34 39 44 35 30 25 20 15 10 5

7 13 19 25 31 37 43 42 36 30 24 18 12 6

0 7 14 21 28 35 42 49 42 35 28 21 14 7

Figure: Maximal number of roots and Hamming weight of basis element

RM7(5, 2) corresponds to ◦: n = 49, k = 21, d = 14

Hyp7(14, 2) corresponds to ◦ plus �: n = 49, k = 24, d = 14.
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Quantum codes from the CSS construction

Given codes C2 ⊆ C1 ⊆ Fn
q the CSS construction gives us an

[[n, `, dz/dx ]]q quantum code.

That is, a q`-dimensional subspace of Cqn which can correct
b(dz − 1)/2c phase-shift errors and b(dx − 1)/2c qudit-flip errors.

Here,
` = dimC1 − dimC2,
dz = wt(C1\C2) = min{wH(~c) | ~c ∈ C1\C2}, and
dx = wt(C⊥2 \C⊥1 )
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Footprint bound / Feng-Rao bound / quantum codes

C2 is the span of ◦.

C1 is the span of ◦ and �.

7 6 5 4 3 2 1 7 14 21 28 35 42 49

14 12 10 8 6 4 2 6 12 18 24 30 36 42

21 18 15 12 9 6 3 5 10 15 20 25 30 35

28 24 20 16 12 8 4 4 8 12 16 20 24 28

35 30 25 20 15 10 5 3 6 9 12 15 18 21

42 36 30 24 18 12 6 2 4 6 8 10 12 14

49 42 35 28 21 14 7 1 2 3 4 5 6 7

Figure: Left-hand side: The footprint numbers tells us that
wt(C1\C2) = min{12, 15, 16} = 12. Right-hand side: The Feng-Rao
numbers tells us that wt(C⊥2 \C⊥1 ) = min{12, 15, 16} = 12. Hence, we
obtain a [[49, 5, 12/12]]7 quantum code.
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More polynomials

Common roots of more polynomials. We may assume pairwise
different leading monomials.

lm(F1) = X 3Y , lm(F2) = XY 2 over S1 × S2 with s1 = 5 and
s2 = 6.

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
· ∗ ∗ ∗ ∗ ∗ ∗
· ∗ ∗ ∗ ∗ ∗ ∗
· ∗ ∗ ∗ ∗ ∗ ∗
· ∗ ∗ ∗ ∗ ∗ ∗
· · · ∗ ∗ ∗ ∗
· · · · · ∗ ∗

There do exist such polynomials with 12 common roots (again
products of linear factors).
Generalizes to t polynomials and m variables.
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Applications in information theory

The number of common roots of r polynomials gives information
on:

I Information leakage in secret sharing.

I Information leakage from wire-tap channels.

Actually again we study C2 ⊂ C1 ⊆ Fn
q and C1/C2. We look for

minimum support of r linearly independent words in C1 but not in
C2.
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Ramp secret sharing schemes

C2 ⊂ C1 ⊆ Fn
q.

C2 = Span{~b1, . . . , ~bk2} C1 = Span{~b1, . . . , ~bk1}

` = k1 − k2.

Secret message ~s = (ak2+1, . . . , ak1) ∈ F`q.

Choose a1, . . . , ak2 by random.

Encode ~c = a1~b1 + · · ·+ ak1
~bk1 = (c1, . . . , cn).

Share 1 is c1,...., Share n is cn.
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Privacy and reconstruction

A ramp secret sharing scheme has (t1, . . . , t`)-privacy and
(r1, . . . , r`)-reconstruction if

I An adversary cannot obtain m q-bits of information about ~s
with tm shares (but for some tm + 1 shares)

I It is possible to recover m q-bits of information about ~s with
any collection of rm shares (but not for all collections of
rm − 1 shares).
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Common zeros...

The m-th relative generalized Hamming weight is:

Mm(C1,C2) = min{#SuppD | D is a subspace of C1,

dimD = m,D ∩ C2 = {~0}}

rm = n −M`−m+1(C1,C2) + 1

tm = Mm(C⊥2 ,C
⊥
1 )− 1
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Gröbner bases

For univariate polynomials F (X ) and G (X ) we have
〈F (X ),G (X )〉 = 〈gcd(F (X ),G (X )). Hence, the footprint is easily
calculated.

F[X1, . . . ,Xm] is NOT a PID for m ≥ 2. So we must expect more
generators.

Definition: {F1(X1, . . . ,Xm), . . . ,Fs(X1, . . . ,Xm)} is a Gröbner
basis for I w.r.t. ≺ if

I F1(X1, . . . ,Xm), . . . ,Fs(X1, . . . ,Xm) ∈ I

I For any F (X1, . . . ,Xm) ∈ I there exists an i ∈ {1, . . . , s} such
that lm(Fi ) divides lm(F ).

Buchberger’s algorithm extends any basis to a Gröbner basis.
Complexity in general high. Involves multivariate division
algorithm.
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Theoretical application of Buchberger’s algorithm

What is the second highest number of roots of a polynomial of
given degree?

20 21 22 23 24
15 17 19 21 23
10 13 16 19 22
5 9 13 17 21
0 5 10 15 20

Cannot be seen from this figure!!!

...but the value suggested by the figure is right! Proof uses
Buchberger’s algorithm at theoretical level
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Part 2:

Affine roots from Cartesian product point sets
counted with multiplicity
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Multiplicity

Definition: ~α = (α1, . . . , αm) is a root of F (X1, . . . ,Xm) of
multiplicity r if F (X1, . . . ,Xm) ∈ Jr\Jr+1. Here,

Js = 〈(X1 − α1)p1 · · · (Xm − αm)pm | p1 + · · ·+ pm = s}.

One can reformulate the footprint bound in this setting using the
CRT

The bad news: The footprint method can be applied, but is not
efficient any more.

Theorem (Schwartz-Zippel bound (Dvir et al)): Let
F (X1, . . . ,Xm) ∈ Fq[X1, . . . ,Xm] be of total degree t. Then∑

~α∈Fm
q

mult(F , ~α) ≤ tqm−1.
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Multiplicity – cont.

Theorem: Let F (X1, . . . ,Xm) ∈ F[X1, . . . ,Xm] be a non-zero
polynomial and let X i1

1 · · ·X im
m be its leading monomial with respect

to a lexicographic ordering ≺lex . Then for any finite sets
S1, . . . ,Sm ⊆ F∑
~a∈S1×···×Sm

mult(F , ~a) ≤ i1s2 · · · sm + s1i2s3 · · · sm + · · ·+ s1 · · · sm−1im.

Corollary: The number of roots of multiplicity at least r is at
most

(
i1s2 · · · sm + s1i2s3 · · · sm + · · ·+ s1 · · · sm−1im

)
/r

For any (i1, . . . , im) there exists F with leading monomial
X i1
1 · · ·X im

m such that the theorem is sharp. But the corollary is
only sharp for few (i1, . . . , im).
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Number of roots of multiplicity at least r

Definition: Let r ∈ N, i1, . . . , im ∈ N0. Define

D(i1, r , s1) = min
{⌊ i1

r

⌋
, s1
}

and for m ≥ 2

D(i1, . . . , im, r , s1, . . . , sm) =

max
(u1,...,ur )∈A(im,r ,sm)

{
(sm − u1 − · · · − ur )D(i1, . . . , im−1, r , s1, . . . , sm−1)

+ u1D(i1, . . . , im−1, r − 1, s1, . . . , sm−1) + · · ·

+ ur−1D(i1, . . . , im−1, 1, s1, . . . , sm−1) + ur s1 · · · sm−1
}

where

A(im, r , sm) =

{(u1, . . . , ur ) ∈ Nr
0 | u1+· · ·+ur ≤ sm and u1+2u2+· · ·+rur ≤ im}.
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Number of roots of multiplicity at least r – cont.

Theorem: For a polynomial F (X1, . . . ,Xm) ∈ F[X1, . . . ,Xm] let
X i1
1 · · ·X im

m be its leading monomial with respect to the
lexicographic ordering ≺lex with Xm ≺lex · · · ≺lex X1. Then F has
at most D(i1, . . . , im, r , s1, . . . , sm) roots of multiplicity at least r in
S1 × · · · × Sm.

We have closed formula upper bounds on D for two variables (4
special cases).

We have a closed formula upper bound on D for arbitrary many
variables, but the leading monomial being “below” a certain
threshold.

A lot of open questions!!!
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D(i1, i2, 3, 5, 5)

20 21 22 23 24
20 20 21 21 23
20 20 20 21 22
15 16 17 19 21
15 15 16 17 20
15 15 15 17 18 22 23 23 24 24
10 11 12 15 17 21 22 22 23 23
10 10 11 13 15 18 20 20 22 22
10 10 10 13 14 17 19 19 21 21
5 6 7 11 12 14 17 17 20 20
5 5 6 9 11 13 16 16 18 19 23 23 24 24 24
5 5 5 9 9 10 14 14 16 18 21 21 23 23 23
0 1 2 7 8 9 13 13 14 17 19 19 22 22 22
0 0 1 5 6 6 11 11 12 16 17 17 21 21 21
0 0 0 5 5 5 10 10 10 15 15 15 20 20 20
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Two variables

Proposition: For k = 1, . . . , r − 1, D(i1, i2, r , s1, s2) is upper
bounded by

(C.1) s2
i1
r

+
i2
r

i1
r − k

if (r − k) r
r+1s1 ≤ i1 < (r − k)s1 and 0 ≤ i2 < ks2

(C.2) s2
i1
r

+ ((k + 1)s2 − i2)(
i1

r − k
− i1

r
) + (i2 − ks2)(s1 −

i1
r

)

if (r − k) r
r+1s1 ≤ i1 < (r − k)s1 and ks2 ≤ i2 < (k + 1)s2

(C.3) s2
i1
r

+
i2

k + 1
(s1 −

i1
r

)

if (r − k − 1)s1 ≤ i1 < (r − k) r
r+1s1 and 0 ≤ i2 < (k + 1)s2.

Finally,

(C.4) D(i1, i2, r , s1, s2) = s2b
i1
r
c+ i2(s1 − b

i1
r
c)

if s1(r − 1) ≤ i1 < s1r and 0 ≤ i2 < s2.
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Small degree

Theorem: If im < rsm and if for t = 1, . . . ,m − 1

it ≤ st min

{
m−1
√
r − 1

m−1
√
r − 1

r

,
m−2
√

2− 1
m−2
√

2− 1
2

}

then D(i1, . . . im, r , s1, . . . sm) ≤ s1 · · · sm − (s1 − i1
r ) · · · (sm − im

r ).
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Besides being interesting in itself...

Studying the number of roots with multiplicity is relevant in
connection with

I Multiplicity codes (Kopparty et al). These are locally
decodable codes

I Kakeya sets over finite fields (Dvir et al)

I List decoding (Guruswami-Sudan)
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Minimum distance decoding of Reed-Solomon codes

Consider a Reed-Solomon code over Fq = {P1, . . . ,Pq}:

RSq(k) = {(F (P1), . . . ,F (Pq)) | deg(F ) < k}.

The minimum distance is d = q − k + 1. Define
t = b(d − 1)/2c = b(q − k)/2c.

If we receive ~r = (r1, . . . , rq) then we determine a non zero
polynomial

Q(X ,Y ) = Q0(X ) + YQ1(X )

that satisfies the following

I Q(P1, r1) = 0, Q(P2, r2) = 0, . . . ,Q(Pq, rq) = 0

I deg(Q0) ≤ q − 1− t = l0
I deg(Q1) ≤ t = l1
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Decoding of RS-code – cont.

How can we be sure that such a polynomial Q(X ,Y ) exists?

Let Q0(X ) = Q0,0 + Q0,1X + Q0,2X
2 + · · ·+ Q0,l0X

l0 and
Q1(X ) = Q1,0 + Q1,1X + · · ·+ Q1,l1X

l1 . We get

Q(P1, r1) = 0

m
Q0,0 + Q0,1P1 + Q0,2P

2
1 + · · ·+ Q0,l0P

l0
1

+Q1,0r1 + Q1,1r1P1 + · · ·+ Q1,l1r1P
l1
1 = 0

This is a homogeneous equation with (l0 + 1) + (l1 + 1) = q + 1
unknown (the Qi ,j ’s).

There are q such equations. A homogeneous system of linear
equations with more unknowns than equations possesses a non
zero solution.
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Decoding of RS-code – cont.

In matrix form we have:


1 P1 P2

1 · · · P l0
1 r1 r1P1 · · · r1P

l1
1

1 P2 P2
2 · · · P l0

2 r2 r2P2 · · · r2P
l1
2

...
...

... · · ·
...

...
... · · ·

...
1 Pq P2

q · · · P l0
q rq rqPq · · · rqP

l1
q





Q0,0

Q0,1

Q0,2
...

Q0,l0

Q1,0

Q1,1
...

Q1,l1


=



0
0
0
...
0
0
0
...
0
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Decoding of RS-codes – cont.

Assume ~c = (F (P1),F (P2), . . . ,F (Pq)) was send (it is unknown to
us) and assume that at most t errors occurred under transmission.

We have Q(P1, r1) = Q(P2, r2) = · · · = Q(Pq, rq) = 0 and as at
most t errors occurred at least q − t zeros among

Q(P1,F (P1)),Q(P2,F (P2)), . . . ,Q(Pq,F (Pq))

Interpret Q(X ,F (X )) = Q0 + F (X )Q1(X ) as a polynomial in X. It
is of degree at most max{q − 1− t, (k − 1) + t} = q − 1− t. A
polynomial of degree at most q − 1− t, that has at least q − t
zeros is the zero-polynomial 0. We get

Q(X ,F (X )) = 0⇔ F (X ) = −Q0(X )

Q1(X )
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List decoding

d

There does not always exists a codeword within the distance
t = b(d − 1)/2c from the received word ~r . In such a case we would
like to investigate greater radii than t. Using such a method we
must accept to sometimes find more candidates for the send word.
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List decoding

Look for Q(X ,Y ) = Q0(X ) + Q1(X )Y + · · ·+ Qm(X )Ym such
that

I Q(Pi , ri ) = 0 for i = 1, . . . , q

I Certain degree conditions on the Qi ’s must be satisfied

Determine all factors Y − F (X ) i Q(X ,Y ). There can at most be
m such factors (in by far most cases only one factor).

The method can be further improved, if zeros are counted with
multiplicity.

Above method generalizes to many classes of codes. Improved
bounds on zeros of prescribed multiplicity might help further.
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Part 3:

Points on curves. Algebraic geometric codes
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Hermitian curves

I = 〈X 4 − Y 3 − Y 〉 ⊆ F9[X ,Y ].
I9 = 〈X 4 − Y 3 − Y ,X 9 − X ,Y 9 − Y 〉 ⊆ F9[X ,Y ].
Hermitian variety: #V(I9) = 27.

Given F (X ,Y ) ∈ F9[X ,Y ] how many roots from Hermitian
variety? That is we ask for the size of the variety of 〈F 〉+ I9.

w(X iY j) = 3i + 4j .
XαY β ≺w X γY δ if:

I w(XαY β) < w(X γY δ)

I w(XαY β) = w(X γY δ) but β < δ

{X 4 − Y 3 − Y ,X 9 − X ,Y 9 − Y } is a Gröbner basis w.r.t. ≺w .
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Hermitian curves – cont.

{X 4 − Y 3 − Y ,X 9 − X ,Y 9 − Y } is a Gröbner basis w.r.t. ≺w .

8 11 14 17 20 23 26 29 32 35 38 · · ·
4 7 10 13 16 19 22 25 28 31 34 · · ·
0 3 6 9 12 15 18 21 24 27 30 · · ·

Figure: w(∆(〈X 4 − Y 3 − Y ,X 9 − X ,Y 9 − Y 〉)) and
w(∆(〈X 4 − Y 3 − Y 〉))

Observe, that all weights are different and X 4 − Y 3 − Y has two
monomials of highest weight.

Hence,
w(X iY jF (X ,Y )) = w(X iY jF (X ,Y ) rem {X 4 − Y 3 − Y }) and
the leading monomial of the latter can be identified by its weight.
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Hermitian curves – cont.

8 11 14 17 20 23 26 29 32
4 7 10 13 16 19 22 25 28

0 3 6 9 12 15 18 21 24

Figure: lm(F ) = X 3Y 2

lm(F ) = X 3Y 2. This is of weight 17. We have
YF rem {X 4 − Y 3 − Y } ∈ I9 and as w(Y ) = 4 the leading
monomial is of weight 17 + 4 = 21. Hence, it is X 7

The footprint of 〈F (X ,Y ),X 4 − Y 3 − Y ,X 9 − X ,Y 9 − Y 〉 is of
size at most 17.
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Hermitian curves – cont.

8 11 14 17 20 23 26 29 32

4 7 10 13 16 19 22 25 28
0 3 6 9 12 15 18 21 24

Figure: lm(F ) = X 3Y 2

General result: F (X ,Y ) can have at most w(lm(F )) roots on the
Hermitian curve.

Not sharp in the upper right corner: w(lm(F )) = 28, but the
Hermitian curve has only 27 affine points. From the footprint clear
that at most 25 roots. This simple observation has a huge impact.
It allows for improved information and improved code
constructions.

Generalizes to X q+1 − Y q − Y ∈ Fq2 [X ,Y ] ... and as we shall see
in a moment to any one-point AG code construction ...
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Order domain conditions (for curves)

Let w1, . . . ,wm be fixed and define
w(X i1

1 · · ·X im
m ) = i1w1 + · · ·+ imwm. Define weighted degree

ordering ≺w by N ≺w M if

I w(N) < w(M)

I w(N) = w(M) but N ≺lex M.

(one may replace ≺lex with any other monomial ordering)
Given an ordering as above we will say that I satisfies the order
domain conditions if:

I I possesses a Gröbner basis {F1, . . . ,Fs} w.r.t. ≺w such that
Fi has exactly two monomials of highest weight, i = 1, . . . , s.

I No two different monomials in ∆≺w (I ) has the same weight.

Everything we did with the Hermitian curve works in this general
set-up!!! (can even be generalized to higher dimensional weights).
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An amazing result due to Miura and Pellikaan

Consider an algebraic function field of transcendence degree 1.
Let P be a rational place and νP the corresponding valuation.
Consider R = ∪∞m=0L(mP) with corresponding Weierstrass
semigroup −νP(R) = 〈w1, . . . ,wm〉.
Then R can be described as F[X1, . . . ,Xm]/I where ≺w and I
satisfy the orderdomain conditions!!!!!

I We can avoid Riemann-Roch and improve upon the Goppa
bound (both at a theoretical and practical level)

I All “points” are affine in this model (except the hidden point
P)

I Suggests a way to treat higher dimensional objects.
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Our application to rational places

As all “points” are affine in this model, from the footprint bound
we derive bounds on the number of rational places.

Let F be an algebraic function field over Fq of transcendence
degree 1. Assume F possesses a rational place with Weierstrass
semigroup Λ = 〈w1, . . . ,wm〉.
The number of rational places of F is at most

#

(
Λ\ ∪mi=1

(
qwi + Λ

)
+ 1

)

The genus g = #
(
N0\Λ

)
is an invariant.

For small g we can run through all possible semigroups with g
gaps and obtain a bound in terms of g and q. Also we can derive
some general estimates. Such bounds are sharper than the Serre
bound for small fields!!!
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Part 4:

Remarks on general linear codes

Olav Geil, Aalborg University, Denmark BOUNDING THE NUMBER OF AFFINE ROOTS



primary versus dual codes

In coding theory we consider both primary (image) and dual
(kernel) description of codes.

The footprint method is mostly usefull for primary codes.
The order bound or the original Feng-Rao bound usefull for dual
codes.

Both the Feng-Rao bound and the footprint bound can be
translated to linear code (linear algebra) level. Here, multiplication
is replaced with componentwise inner product!!!

At this level we call the footprint bound for the Feng-Rao bound
for primary codes – since one can show that the two Feng-Rao
bounds are consequences of each other.
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