Automorphisms of an srg(162,21,0,3)

Applications to Mixed Moore Graphs.

Leif K. Jørgensen Aalborg University, Denmark

NORCOM, August 2019

A (*undirected*) **strongly regular graph** with parameters (v, k, λ, μ) satisfies

- it has v verices,
- it is regular of valency k,
- two adjacent vertices have λ common neighbours,
- two non-adjacent vertices have μ common neighbours.

A **Moore graph** is a strongly regular graph with parameters $(k^2 + 1, k, 0, 1)$.

A Moore graph is a graph M with diameter 2 and girth 5.

Theorem (Hoffman and Singleton 1960) If a Moore graph M of valency k exists then either

- k = 2 and M is C_5 , (Automorphism group: Dihedral group of order 10)
- k = 3 and M is the Petersen graph, P(Automorphism group: S_5 of order 120)
- k = 7 and M is the Hoffman-Singleton graph, (Automorphism group: $P\Sigma U(3, 5^2)$ of order 252000)

- k = 57 where existence is unknown.
 - (Mačaj and Širáň 2010): A Moore graph of valency 57 has at most 375 automorphisms.

A regular mixed graph with

- undirected degree *t*,
- directed degree z and
- diameter 2

has at most $1 + z + t + z(t + z) + t(t + z - 1) = (t + z)^2 + z + 1$ vertices.

If it has exactly $(t+z)^2 + z + 1$ vertices then it is called a **Mixed Moore graph**.

Special cases:

z = 0: undirected, see Hoffman-Singleton

t = 1: for every $z \ge 1$ the line-digraph $L(K_{z+2})$ of the complete directed graph is a mixed Moore graph with directed degree z and undirected degree t = 1.

Gimbert (2001) proved that these are the unique mixed Moore graphs with t = 1.

Feasible cases with z > 0 and t > 1:

n	t	Z	Exists ?
18	3	1	Bosák graph, unique
40	3	3	No, LMF
54	3	4	No, LMF
84	7	2	No, LMF
88	3	6	?
108	3	7	Jørgensen
150	7	5	?
:			
486	21	1	?
:			

López, Miret, Fernández (2016) proved mixed Moore graphs with 40, 54 or 84 vertices do not exist. They used a SAT solver. For a group X and a set $S \subset X$, let Cay(X, S) denote the (directed) **Cayley graph** with vertex set X and edges (x, y) when $yx^{-1} \in S$.

This is an easy way to describe a large graph. Because it is vertex-transitive it is easy to test properties.

Example. The undirected Moore graphs: the Petersen graph and the Hoffman-Singleton graph are not Cayley graphs.

Example. The mixed Moore graph on 18 vertices: the Bosák graph is a Cayley graph.

Example. The mixed Moore graphs on 108 found by Jørgensen (2015) are Cayley graphs.

Example. The mixed Moore graph $L(K_{z+2})$ is a Cayley graph if and only z + 2 is a prime power.

Erskine (2017) proved that there are no other mixed Moore Cayley graphs of order at most 485.

Does there exist a mixed Moore (Cayley) graph of order 486.

A mixed Moore graph with n = 486, t = 21, z = 1 satisfies:

- The directed edges form 162 triangles.
- Between two triangles there are either no edges or there is a matching.
- The graph obtained by contracting every directed triangle to a vertex is a strongly regular graph srg(162,21,0,3).
- The graph obtained by deleting the directed edges is an antipodal distance regular graph with diameter 4.

Theorem, Makhnev and Nosov 2010 Let g be an automorphism of srg(162,21,0,3) of order 2. The either

- $Fix(g) = K_{1,3}$ or
- Fix(g) = Ø and vertices a and a^g are adjacent.
 Identifying each pair {a, a^g} gives the unique srg(81,20,1,6).

Every automorphism of order 2 is an odd permutation.

If srg(162,21,0,3) is vertex transitive then every automorphism g of order 2 has $Fix(g) = \emptyset$.

{20,18,3,1; 1,3,18,20}, a 2-cover of srg(81,20,1,6)

Edges of Brouwer-Haemers graph are labelled 0/1

Condition on labelling of edges in Brouwer-Haemers graph:

For 3 paths: edges of the path have the same label.

Weaker condition:

For 1, 3 or 5 paths: edges of the path have the same label.

Equivalent condition: Sum of labels of the 12 edges of a $K_{2,6}$ is $\equiv 1 \pmod{2}$.

For each of 2430 pairs of non-adjacent vertices in Brouwer-Haemers graph we have a linear equation over GF(2) in 810 unknowns.

Gaussian elimination:

There are no solutions.

A distance regular graph with intersection array $\{20, 18, 3, 1; 1, 3, 18, 20\}$ does not exist.

An srg(162,21,0,3) does not have an automorphism g with order 2 and $Fix(g) = \emptyset$.

An srg(162,21,0,3) can not be vertex transitive.

(Assuming that Makhnev-Nosov theorem is correct:) A mixed Moore graph of order 486 can not be vertex transitive, as srg(162,21,0,3) is a quotient. Similarly, the following intersection arrays can be excluded:

2. {32,27,6,1; 1,6,27,32} 2-cover of srg(105,32,4,12)

3. {56,45,12,1; 1,12,45,56}
2-cover of srg(162,56,10,24)

Case 2 was excluded by Soicher 2017. Case 3 was excluded by Brouwer.