Automorphisms of an $\operatorname{srg}(162,21,0,3)$

Applications to Mixed Moore Graphs.

Leif K. Jørgensen
Aalborg University, Denmark

NORCOM, August 2019

A (undirected) strongly regular graph with parameters ($v, k, \lambda, \mu)$ satisfies

- it has v verices,
- it is regular of valency k,
- two adjacent vertices have λ common neighbours,
- two non-adjacent vertices have μ common neighbours.

A Moore graph is a strongly regular graph with parameters ($k^{2}+1, k, 0,1$).

A Moore graph is a graph M with diameter 2 and girth 5 .

Theorem (Hoffman and Singleton 1960)
If a Moore graph M of valency k exists then either

- $k=2$ and M is C_{5},
(Automorphism group: Dihedral group of order 10)
- $k=3$ and M is the Petersen graph, P
(Automorphism group: S_{5} of order 120)
- $k=7$ and M is the Hoffman-Singleton graph, (Automorphism group: $P \Sigma U\left(3,5^{2}\right)$ of order 252000)
- $k=57$ where existence is unknown.
(Mačaj and Širáñ 2010): A Moore graph of valency 57 has at most 375 automorphisms.

A regular mixed graph with

- undirected degree t,
- directed degree z and
- diameter 2
has at most $1+z+t+z(t+z)+t(t+z-1)=(t+z)^{2}+z+1$ vertices.
If it has exactly $(t+z)^{2}+z+1$ vertices then it is called a Mixed Moore graph.

Special cases:
$z=0$: undirected, see Hoffman-Singleton
$t=1$: for every $z \geq 1$ the line-digraph $L\left(K_{z+2}\right)$ of the complete directed graph is a mixed Moore graph with directed degree z and undirected degree $t=1$.
Gimbert (2001) proved that these are the unique mixed Moore graphs with $t=1$.

Feasible cases with $z>0$ and $t>1$:

n	t	z	Exists ?
18	3	1	Bosák graph, unique
40	3	3	No, LMF
54	3	4	No, LMF
84	7	2	No, LMF
88	3	6	$?$
108	3	7	Jørgensen
150	7	5	$?$
\vdots			
486	21	1	$?$
\vdots			

López, Miret, Fernández (2016) proved mixed Moore graphs with 40,54 or 84 vertices do not exist.
They used a SAT solver.

For a group X and a set $S \subset X$, let $\operatorname{Cay}(X, S)$ denote the (directed) Cayley graph with vertex set X and edges (x, y) when $y x^{-1} \in S$.

This is an easy way to describe a large graph.
Because it is vertex-transitive it is easy to test properties.

Example. The undirected Moore graphs: the Petersen graph and the Hoffman-Singleton graph are not Cayley graphs.

Example. The mixed Moore graph on 18 vertices: the Bosák graph is a Cayley graph.

Example. The mixed Moore graphs on 108 found by Jørgensen (2015) are Cayley graphs.

Example. The mixed Moore graph $L\left(K_{z+2}\right)$ is a Cayley graph if and only $z+2$ is a prime power.

Erskine (2017) proved that there are no other mixed Moore Cayley graphs of order at most 485.

Does there exist a mixed Moore (Cayley) graph of order 486.

A mixed Moore graph with $n=486, t=21, z=1$ satisfies:

- The directed edges form 162 triangles.
- Between two triangles there are either no edges or there is a matching.
- The graph obtained by contracting every directed triangle to a vertex is a strongly regular graph $\operatorname{srg}(162,21,0,3)$.
- The graph obtained by deleting the directed edges is an antipodal distance regular graph with diameter 4.

Theorem, Makhnev and Nosov 2010
Let g be an automorphism of $\operatorname{srg}(162,21,0,3)$ of order 2.
The either

- $\operatorname{Fix}(g)=K_{1,3}$ or
- $\operatorname{Fix}(g)=\varnothing$ and vertices a and a^{g} are adjacent. Identifying each pair $\left\{a, a^{g}\right\}$ gives the unique $\operatorname{srg}(81,20,1,6)$.

Every automorphism of order 2 is an odd permutation.

If $\operatorname{srg}(162,21,0,3)$ is vertex transitive then every automorphism g of order 2 has $\operatorname{Fix}(g)=\varnothing$.

$\{20,18,3,1 ; 1,3,18,20\}$, a 2 -cover of $\operatorname{srg}(81,20,1,6)$

2-cover of $\operatorname{srg}(81,20,1,6)$

$\operatorname{srg}(81,20,1,6) \quad$ unique Brouwer-Haemers

Edges of Brouwer-Haemers graph are labelled 0/1

Condition on labelling of edges in Brouwer-Haemers graph:

For 3 paths: edges of the path have the same label.

Weaker condition:
For 1, 3 or 5 paths: edges of the path have the same label.

Equivalent condition:
Sum of labels of the 12 edges of a $K_{2,6}$ is $\equiv 1(\bmod 2)$.

For each of 2430 pairs of non-adjacent vertices in BrouwerHaemers graph we have
a linear equation over $G F(2)$ in 810 unknowns.

Gaussian elimination:
There are no solutions.

A distance regular graph with intersection array $\{20,18,3,1 ; 1,3,18,20\}$ does not exist.

An srg(162,21,0,3) does not have an automorphism g with order 2 and $\operatorname{Fix}(g)=\varnothing$.

An $\operatorname{srg}(162,21,0,3)$ can not be vertex transitive.
(Assuming that Makhnev-Nosov theorem is correct:)
A mixed Moore graph of order 486 can not be vertex transitive, as $\operatorname{srg}(162,21,0,3)$ is a quotient.

Similarly, the following intersection arrays can be excluded:

```
1. \(\{22,21,3,1 ; 1,3,21,22\}\)
2 -cover of \(\operatorname{srg}(100,22,0,6)\)
```

2. $\{32,27,6,1 ; 1,6,27,32\}$

2 -cover of $\operatorname{srg}(105,32,4,12)$
3. $\{56,45,12,1 ; 1,12,45,56\}$ 2 -cover of $\operatorname{srg}(162,56,10,24)$

Case 2 was excluded by Soicher 2017.
Case 3 was excluded by Brouwer.

