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Linear codes

Let C ⊂ (Fq)n, for Fq the field with q elements.

If C is a subvector space of (Fq)n, then it called a linear code.
The dimension k of C is its dimension as vector space over Fq.
Clearly 0 ≤ k ≤ n.
Moreover the minimum distance of C is

d = d(C ) = min d(x, y),

for x, y ∈ C and x 6= y.
From the translation invariance of linear codes,
d(x, y) = d(x− y, 0), we observe:

d = d(C ) = minw(x) = min d(x, 0),

for x ∈ C and x 6= 0.

by Trygve Johnsen, based on joint work with Sudhir Ghorpade Generalized weights of rank metric codes, a combinatorial appraoch



Generalities about rank metric codes
Duality

(q,m)-polymatroids
Gabidulin codes and flags of codes

Linear codes

Let C ⊂ (Fq)n, for Fq the field with q elements.
If C is a subvector space of (Fq)n, then it called a linear code.

The dimension k of C is its dimension as vector space over Fq.
Clearly 0 ≤ k ≤ n.
Moreover the minimum distance of C is

d = d(C ) = min d(x, y),

for x, y ∈ C and x 6= y.
From the translation invariance of linear codes,
d(x, y) = d(x− y, 0), we observe:

d = d(C ) = minw(x) = min d(x, 0),

for x ∈ C and x 6= 0.

by Trygve Johnsen, based on joint work with Sudhir Ghorpade Generalized weights of rank metric codes, a combinatorial appraoch



Generalities about rank metric codes
Duality

(q,m)-polymatroids
Gabidulin codes and flags of codes

Linear codes

Let C ⊂ (Fq)n, for Fq the field with q elements.
If C is a subvector space of (Fq)n, then it called a linear code.
The dimension k of C is its dimension as vector space over Fq.
Clearly 0 ≤ k ≤ n.

Moreover the minimum distance of C is

d = d(C ) = min d(x, y),

for x, y ∈ C and x 6= y.
From the translation invariance of linear codes,
d(x, y) = d(x− y, 0), we observe:

d = d(C ) = minw(x) = min d(x, 0),

for x ∈ C and x 6= 0.

by Trygve Johnsen, based on joint work with Sudhir Ghorpade Generalized weights of rank metric codes, a combinatorial appraoch



Generalities about rank metric codes
Duality

(q,m)-polymatroids
Gabidulin codes and flags of codes

Linear codes

Let C ⊂ (Fq)n, for Fq the field with q elements.
If C is a subvector space of (Fq)n, then it called a linear code.
The dimension k of C is its dimension as vector space over Fq.
Clearly 0 ≤ k ≤ n.
Moreover the minimum distance of C is

d = d(C ) = min d(x, y),

for x, y ∈ C and x 6= y.

From the translation invariance of linear codes,
d(x, y) = d(x− y, 0), we observe:

d = d(C ) = minw(x) = min d(x, 0),

for x ∈ C and x 6= 0.

by Trygve Johnsen, based on joint work with Sudhir Ghorpade Generalized weights of rank metric codes, a combinatorial appraoch



Generalities about rank metric codes
Duality

(q,m)-polymatroids
Gabidulin codes and flags of codes

Linear codes

Let C ⊂ (Fq)n, for Fq the field with q elements.
If C is a subvector space of (Fq)n, then it called a linear code.
The dimension k of C is its dimension as vector space over Fq.
Clearly 0 ≤ k ≤ n.
Moreover the minimum distance of C is

d = d(C ) = min d(x, y),

for x, y ∈ C and x 6= y.
From the translation invariance of linear codes,
d(x, y) = d(x− y, 0), we observe:

d = d(C ) = minw(x) = min d(x, 0),

for x ∈ C and x 6= 0.

by Trygve Johnsen, based on joint work with Sudhir Ghorpade Generalized weights of rank metric codes, a combinatorial appraoch



Generalities about rank metric codes
Duality

(q,m)-polymatroids
Gabidulin codes and flags of codes

Delsarte rank metric codes

A Delsarte rank metric code C is a subspace of the set of
(m × n)-matrices over Fq.

The dimension K of C is its dimension as vector space over Fq.
Clearly 0 ≤ K ≤ m × n.
Moreover the minimum distance of C is

d = d(C ) = min d(M,N) = min rk(M − N)

for M,N ∈ C and M 6= N.
From the translation invariance of linear codes,
d(M,N) = d(M − N), 0), we observe:

d = d(C ) = min d(M, 0) = min rk(M),

for M ∈ C and M 6= 0.
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Generalized weights of rank metric codes

For X a subspace of E = F n
q set

C (X ) = {M ∈ C | rowspace(M) ⊂ X}

.

For r = 1, · · · , k = dimC set:

dr (C ) = min{dimX |X ≤ E and dimC (X ) ≥ r}

.
In particular

d1(C ) = min{dimX | dimC (X ) ≥ 1} =

min{dimX | the row space of some M ∈ C is contained in X} =

min{rk(M)|M ∈ C} = d(C ).
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Duality of rank metric codes

Given a Delsarte rank metric code C . Its dual code C⊥ consists of
those (m × n)-matrices N, such that

[M × Nt ]T = 0,

for all M ∈ C . Here T denotes the trace of a diagonal matrix, and
t denotes transposition of matrices.

We observe that dimC⊥ = mn − K , and that (C⊥)⊥ = C .
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Is there some sort of Wei duality between C and C⊥ ?

There are K values of r to find dr (C ) for, and mn − K values of r
to find dr (C⊥) for, so altogether mn such generalized di to
consider. All these values are in {1, 2, · · · , n}.
Hence a statement like

{1, 2, · · · , n} = {d1(C ), · · · , dK (C )}∪

{n + 1− d1(C⊥), · · · , n + 1− dmn−K (C⊥)}

is impossible if m ≥ 2.
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Modified Wei duality

Let

Ws(C ) = {dr (C ), r = 1, · · · ,K , and r = s(mod m)}

and

W s(C ) = {n + 1− dr (C ), r = 1, · · · ,K , and r = s(mod m)}.

Then
Ws(C⊥) = {1, 2, · · · , n} −W s+mK (C ),

for 0 ≤ s < m. (So {1, 2, · · · , n} is the disjoint union of these two
sets.)
How does one prove this ?

by Trygve Johnsen, based on joint work with Sudhir Ghorpade Generalized weights of rank metric codes, a combinatorial appraoch



Generalities about rank metric codes
Duality

(q,m)-polymatroids
Gabidulin codes and flags of codes

Modified Wei duality

Let

Ws(C ) = {dr (C ), r = 1, · · · ,K , and r = s(mod m)}

and

W s(C ) = {n + 1− dr (C ), r = 1, · · · ,K , and r = s(mod m)}.

Then
Ws(C⊥) = {1, 2, · · · , n} −W s+mK (C ),

for 0 ≤ s < m. (So {1, 2, · · · , n} is the disjoint union of these two
sets.)

How does one prove this ?

by Trygve Johnsen, based on joint work with Sudhir Ghorpade Generalized weights of rank metric codes, a combinatorial appraoch



Generalities about rank metric codes
Duality

(q,m)-polymatroids
Gabidulin codes and flags of codes

Modified Wei duality

Let

Ws(C ) = {dr (C ), r = 1, · · · ,K , and r = s(mod m)}

and

W s(C ) = {n + 1− dr (C ), r = 1, · · · ,K , and r = s(mod m)}.

Then
Ws(C⊥) = {1, 2, · · · , n} −W s+mK (C ),

for 0 ≤ s < m. (So {1, 2, · · · , n} is the disjoint union of these two
sets.)
How does one prove this ?

by Trygve Johnsen, based on joint work with Sudhir Ghorpade Generalized weights of rank metric codes, a combinatorial appraoch



Generalities about rank metric codes
Duality

(q,m)-polymatroids
Gabidulin codes and flags of codes

Modified Wei duality

There are several ways to do it, and various approaches from
different authors.
A (q,m)-polymatroid is an ordered pair P = (E , ρ), where
E = (Fq)n as before and ρ is a function from
Σ(E ) (=the set of subspaces of E) to N0 = 0, 1, 2, · · · } satisfying

(R1) 0 ≤ ρ(X ) ≤ m dimX ,

(R2) If X ≤ Y , then ρ(X ) ≤ ρ(Y ),

(R3) ρ(X + Y ) + ρ(X ∩ Y ) ≤ ρ(X ) + ρ(Y ),

for all subspaces X , y of E . We set rk(P) = ρ(E ).
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Polymatroid of a code

For a rank metric code C set (E = (Fq)n), and

ρ(X ) = dimC − dimC (X⊥),

for the usual dot product on E .

One can prove (Keisuke Shiromoto) that P = (E , ρ) is a
(q,m)−polymatroid. Call it P(C ).
Let P∗ = (E , ρ∗), where

ρ∗(X ) = ρ(X⊥) + m dimX − ρ(E ),

for all subspaces X of E .
Then P(C )∗ = P(C⊥).
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For a (q,m)-polymatroid P set

dr (P) = min{dimX |ν∗(X ) ≥ r},

for r = 1, · · · , rk(P). Here ν∗(X ) denotes the conullity
m dimX − ρ∗(X ).

Theorem

If C is a Delsarte rank metric code, then dr (P(C )) = dr (C ) (and
dr (P(C )∗) = dr (P(C⊥) = dr (C⊥) for all r in question.

We prove more:
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Wei duality for (q,m)-polymatroids

Theorem

Modified Wei duality is valid for (q,m)-polymatroids in general:
Let

Ws(P) = {dr (C ), r = 1, · · · ,K = rk(P), and r = s(mod m)}

and

W s(P) = {n + 1− dr (P), r = 1, · · · ,K , and r = s(mod m)}.

Then
Ws(P∗) = {1, 2, · · · , n} −W s+mK (P),

for 0 ≤ s < m. (So {1, 2, · · · , n} is the disjoint union of these two
sets.)
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Variations on this theme

There are other definitions of generalized weights for Delsarte rank
metric codes using socalled anticodes. (Ravagnani/Gorla). Our
description/definition matches theirs for m > n. If m < n, one
could interchange the roles of m and n, and look at the
”transposed” (q, n)-polymatroid P ′(C ) = ((Fq)m, ρ′) defined in an
analogous way. Then this matches the definition s of
Ravagnani/Gorla, and modified Wei duality can be shown in an
analogues, transposed way.

For square m×m = n× n-matrices, one could look at the function
ρ(X ) = min(ρm(X ), ρ′(X )), where ρm is the ”old” ρ.
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Then one can define

ρ∗(X ) = ρ(X⊥) + m dimX − ρ(E ),

and
dr (P) = min{dimX |ν∗(X ) ≥ r},

as before. Then this matches the definition of Ravagnani/Gorla.
Problem: This ”new” ρ is not necessarily a (q,m)-polymatroid.
Does modified Wei duality hold ?

Solution: This ”new” P = (E , ρ)
turns out to be a socalled (q,m)-demipolymatroid, and one can
prove that modified Wei duality holds for such combinatorial
objects also.
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A (q,m)-demipolymatroid is an ordered pair P = (E , ρ), where
E = (Fq)n as before and ρ is a function from
Σ(E ) (=the set of subspaces of E) to N0 = 0, 1, 2, · · · } satisfying

(R1) 0 ≤ ρ(X ) ≤ m dimX ,

(R2) If X ≤ Y , then ρ(X ) ≤ ρ(Y ),

(R4) ρ∗ satisfies (R1) and (R2).

In particular (q,m)-polymatroids are (q,m)-demipolymatroids.
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E = (Fq)n as before and ρ is a function from
Σ(E ) (=the set of subspaces of E) to N0 = 0, 1, 2, · · · } satisfying

(R1) 0 ≤ ρ(X ) ≤ m dimX ,

(R2) If X ≤ Y , then ρ(X ) ≤ ρ(Y ),

(R4) ρ∗ satisfies (R1) and (R2).
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Gabidulin codes

These are particularly simple since K = mk always is divisible by
m. One fixes a k-dimensional subspace of F n

qm over the field Fqm ,
in other words a block code of length n(< mover this big field.
Instead of using the usual Hamming distance, one fixes a basis
{e1, · · · , em} of Fqm as a vector space over the field Fq. Hence
every n-tuple over Fqm is identified with an (m × n)-matrix with
entries in Fq. Then one proceeds as above, and the modified Wei
duality simplifies:

Ws(C⊥) = {1, 2, · · · , n} −W s+mK (C )

becomes
Ws(C⊥) = {1, 2, · · · , n} −W s(C ),

for s = 0, 1, · · · ,m − 1.
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In general, for a Delsarte rank metric code, we call C an MRD
code if m > n, and K = mk is divisible by m, and C (X ) = {0} for
all subspaces X of E = (Fq)n with dimX ≤ n − k. On the
(q,m)-level this gives ρC (X ) = K = mk if dimX ≥ k, and
ρC (X ) = m dimX if dimX ≤ k.

This means that P(C ) is the
”uniform” (q,m)-polymatroid U(k ,m). This is analogous to the
situation for block codes, that they are MDS if and only their
associated (usual) matroids are uniform.
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Flags of codes

If F = Cs ≤ · · ·C2 ≤ C1 is a flag/chain of Delsarte rank metric
codes (and if, say, m > n), then look at

ρ(X ) = ρ1(X )− ρ2(X ) + · · ·+ (−1)s+1ρs(X ).

Then P = (E , ρ) is a (q,m)-demipolymatroid. So modified Wei
duality holds on the ”matroid”-level. Is there a dual flag/chain F⊥

such that P∗ = P(F⊥).

It is, if s is odd; just take the chain of orthogonal complements. If
s is even, and Cs 6= 0, add Cs+1 = {0}, and regard it as an ”odd”
case. If s is even, and Cs = 0, delete Cs , and regard it as an ”odd”
case. The modified Wei duality holds on the code level.
Most interesting case: s = 2. But the dual/perpendicular objects
are triples (or single codes).
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