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Numerical Alg. Geometry: Homotopy Continuation
Wish to find the roots of

f = x3 − 2x2 − 3x + 5

Know the roots 1,2,3 of

g = (x − 1)(x − 2)(x − 3)

Form the family of systems

H(x , t) = (1− t)(x3 − 2x2 − 3x + 5) + t(x − 1)(x − 2)(x − 3).

In general one
may choose:

g1 := xdeg(f1)
1 − 1

...
gn := xdeg(fn)

n − 1

Called total degree
homotopy.



Goal:

a combinatorial/polyhedral version of homotopy continuation.

With this algorithm we can:
I compute mixed volumes of polytopes
I enumerate mixed cells
I provide start systems to numerical homotopy continuation

The algorithm has been implemented in:
I Gfan software for Gröbner bases and polyhedral fans
I Julia package HomotopyContinuation.jl for polynomial

system solving by Paul Breiding and Sascha Timme



Tropical Geometry
We evaluate polynomials over R with operations

I a⊕ b := max(a,b)
I a� b := a + b

Evaluating 1� x�2 � y�3 at (4,5) gives

1� 4� 4︸ ︷︷ ︸
2

�5� 5� 5︸ ︷︷ ︸
3

= 1 + 2 · 4 + 3 · 5 = 1 +

(
2
3

)
·
(

4
5

)

Tropical polynomials are piece-wise linear.

(−2� x�2)⊕ (0� x)⊕ (1)

= max(2x − 2, x ,1)

For f ∈ R[x1, . . . , xn]: The “tropical hypersurface” is defined as

T (f ) := {(a1, . . . ,an) ∈ Rn : max in f (a) is attained ≥ twice}



Tropical hypersurfaces

Equivalently, if f has exponent vectors being columns of
A ∈ Zn×m and coefficients c ∈ Rm then

f (ω) = maxm
i=1(ci + 〈ai , ω〉)

T (f ) = {ω ∈ Rn : maxm
i=1(ci + 〈ai , ω〉) is attained ≥ twice}

Example
f = (−1)⊕ (y)⊕ (x)⊕ (x � y)⊕ ((−1)� x � x)

A =

(
0 0 1 1 2
0 1 0 1 0

)
, c = (−1,0,0,0,−1).
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Tropical hypersurfaces

T (x1 ⊕ x2 ⊕ x3 ⊕ 0) =



How do solutions to a tropical polynomial system look?

f1 = 0� x ⊕ 0� y ⊕ 0

f2 = (−1)�x�2�y⊕(−1)�x�2⊕0�y�2

The intersection points are dual to the mixed cells in the
subdivision of New(f1)+New(f2) using the lift (0,0,0,−1,−1,0)
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Mixed volumes

Definition
Let C1,C2, . . . ,Cn ⊆ Rn be bounded convex sets. The function

f : Rn → R
(λ1, . . . , λn) 7→ Volume(λ1C1 + · · ·+ λnCn)

is polynomial in the variables λ1, . . . , λn. The coefficient of
λ1 · · ·λn is called the mixed volume of C1, . . . ,Cn.

Example

Vol(λ1 · + λ2 · ) = Vol((λ1 + λ2) · ) =

(λ1 + λ2)
2Vol( ) =

1
2
(λ1 + λ2)

2 =
1
2
λ2

1 + 1 λ1λ2 +
1
2
λ2

2

Theorem (Bernstein,Kusnirenko,Khovanskii 1975)
If f1, . . . , fn ∈ C[x1, . . . , xn] are generic then
|V (〈f1, . . . , fn〉) ∩ (C \ {0})n| = MixVol(New(f1), . . . ,New(fn)).



Specifications
We have a numerical algorithm with these specifications:

Algorithm (Numerical homotopy continuation)

Input: g1, . . . ,gn ∈ C[x1, . . . , xn] generic start system
All solutions V (g1) ∩ · · · ∩ V (gn) ⊆ Cn

f1, . . . , fn ∈ C[x1, . . . , xn] target system.
Output: All isolated solutions in V (f1) ∩ · · · ∩ V (fn)

We want a tropical (combinatorial) algorithm:

Algorithm (Tropical homotopy continuation)

Input: g1, . . . ,gn ∈ R[x1, . . . , xn] generic start system
The finite set T (g1) ∩ · · · ∩ T (gn) ⊆ Rn

f1, . . . , fn ∈ R[x1, . . . , xn] target system.
Output: All isolated solutions in T (f1) ∩ · · · ∩ T (fn)



How solutions move around as coefficients change

A1 =

(
0 0 1 1
0 2 0 1

)
and A2 =

(
0 0 1 2
0 1 1 0

)
.

Choosing w1 = (0,0,0,−2)t and w2 = (0,−3,−4,−8)t we get
the two tropical hypersurfaces shown in the middle picture.
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How do we get started?
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Notice: if height goes to −∞ pieces break off.
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This allows us to do a total degree homotopy to get started:
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Which lifts give rise to the cell “3”?
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One inequality is (0,1,2,−3,−1,0,1,0) · ω ≥ 0
0 0 1 1 0 0 1 2
0 2 0 1 0 1 1 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1


I One inequality for each “additional” column.
I Inequality set can be updated efficiently as cell changes.



Path tracking. Paths collide.
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But can be treated independently with Reverse Search [Avis,
Fukuda].

I Split cycle-free directed graph into a forest.
I Compute each tree recursively.



Regeneration (Hauenstein,Sommese,Wampler,2011)
Suppose we want to solve f1 = · · · = fn = 0.

I Choose random linear polynomials l1, . . . , ln
Now solve

I l1 = l2 = · · · = ln = 0
I f1 = l2 = · · · = ln = 0 y

I f1 = f2 = · · · = ln = 0
I ...
I f1 = f2 = · · · = fn = 0

Single step:
Choose deg(f2) random linear polynomials L1, . . . ,Ldeg(f2).
Do homotopies:

f1 = l2 = · · · = ln = 0 −→ f1 = Li = · · · = ln = 0 fori = 1, . . . deg(f2)

f1 = L1 · · ·Ldeg(f2) = l3 = · · · = ln = 0 −→ f1 = f2 = l3 = · · · = ln = 0



Tropical Regeneration Procedure
Goal: Solve generic system for the two Newton polytopes i.e.
find mixed volume of
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Tropical Regeneration Procedure
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Tropical Regeneration Procedure
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We have solved a generic system. The mixed volume is 3.



Mixed cell and volume computation (#P hard)

Useful for polyhedral homotopies (Huber-Sturmfels).

2006 Mizutani, Takeda, Kojima: Dynamic enumeration
2011 Lee, Li: Better implementation
2014 Malajovich: First tropical method
2015 Jensen: Tropical homotopy continuation (Gfan)

The new algorithm is Exact, Memory-less and Parallelisable.

Example n Mixed vol. 1 thr. 16 thr.∗ Mal. (8) Lee,Li (1)
Cyclic-15 15 35243520 461.3 35.8 4070 36428
Noon-20 20 3486784361 59.0 4.8 6460 1109
Chand.-21 21 1048576 151.6 11.5 7580 1067
Kats.-17 18 131070 4.5 0.5 5310 75619
Eco-22 22 1048576 102.7 8.5 8750

Timings in seconds. *16 threads - Thanks to Bjarne Knudsen!



Complexity
Malajovich’ algorithm (2014) works with “probability 1”.

I “Computing mixed volume and all mixed cells in
quermassintegral time”

He provides complexity bounds based on geometry.

Similar results hold for the tropical homotopy:

Theorem (Jensen)
The number of edges in T (A1, ω1) ∧ · · · ∧ T (An−1, ωn−1) is

≤ 3 ·MixVol(conv(A1), . . . , conv(An−1),
n−1∑
i=1

conv(Ai))

under the assumption that
∑n−1

i=1 conv(Ai) is full-dimensional
and ω1, . . . , ωn−1 are generic.



Are all isolated solutions found?

Algorithm (Tropical homotopy continuation)

Input: g1, . . . ,gn ∈ R[x1, . . . , xn] generic start system
The finite set T (g1) ∩ · · · ∩ T (gn) ⊆ Rn

(non-generic) f1, . . . , fn ∈ R[x1, . . . , xn] target.
Output: All isolated solutions in T (f1) ∩ · · · ∩ T (fn)

Based on:

Theorem (Osserman and Payne, 2013)

codim(T (h1) ∩ T (h2)) ≤ codim(T (h1)) + codim(T (h2))

However, it follows from complexity results of Theobald that
I It is NP-hard to decide if a solution is isolated.



Future directions: tropical “Smale” problem
Smale’s 17th problem:

I “Solving polynomial equations in polynomial time in the
average case”

resolved in 2016 (P. Lairez and others).

Tropical version:
I Is there a polynomial time algorithm for finding a single

mixed cell?
Ref.: Codenotti, Walther: “Finding a fully mixed cell”, 2019

Note: existence of a cell is in P (matroid intersection!).

Earlier results relating tropical and non-tropical complexity:
“Log-barrier interior point methods are not strongly polynomial”
by Allamigeon, Benchimol, Gaubert, Joswig, 2017
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