Tropical homotopy continuation

Anders Nedergaard Jensen

Aarhus Universitet

13th Nordic Combinatorial Conference, København, Aug 2019

Numerical Alg. Geometry: Homotopy Continuation

Wish to find the roots of

$$
f=x^{3}-2 x^{2}-3 x+5
$$

Know the roots $1,2,3$ of

$$
g=(x-1)(x-2)(x-3)
$$

Form the family of systems

$$
H(x, t)=(1-t)\left(x^{3}-2 x^{2}-3 x+5\right)+t(x-1)(x-2)(x-3)
$$

In general one may choose:

$$
g_{1}:=x_{1}^{\operatorname{deg}\left(f_{1}\right)}-1
$$

$$
g_{n}:=x_{n}^{\operatorname{deg}\left(f_{n}\right)}-1
$$

Called total degree homotopy.

Goal:

a combinatorial/polyhedral version of homotopy continuation.

With this algorithm we can:

- compute mixed volumes of polytopes
- enumerate mixed cells
- provide start systems to numerical homotopy continuation

The algorithm has been implemented in:

- Gfan software for Gröbner bases and polyhedral fans
- Julia package HomotopyContinuation.jl for polynomial system solving by Paul Breiding and Sascha Timme

Tropical Geometry

We evaluate polynomials over \mathbb{R} with operations

- $a \oplus b:=\max (a, b)$
- $a \odot b:=a+b$

Evaluating $1 \odot x^{\odot 2} \odot y^{\odot 3}$ at $(4,5)$ gives

$$
1 \odot \underbrace{4 \odot 4}_{2} \odot \underbrace{5 \odot 5 \odot 5}_{3}=1+2 \cdot 4+3 \cdot 5=1+\binom{2}{3} \cdot\binom{4}{5}
$$

Tropical polynomials are piece-wise linear.

$$
\begin{gathered}
\left(-2 \odot x^{\odot 2}\right) \oplus(0 \odot x) \oplus(1) \\
\quad=\max (2 x-2, x, 1)
\end{gathered}
$$

For $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$: The "tropical hypersurface" is defined as $T(f):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}:\right.$ max in $f(a)$ is attained \geq twice $\}$

Tropical hypersurfaces

Equivalently, if f has exponent vectors being columns of $A \in \mathbb{Z}^{n \times m}$ and coefficients $c \in \mathbb{R}^{m}$ then

$$
\begin{gathered}
f(\omega)=\max _{i=1}^{m}\left(c_{i}+\left\langle\mathbf{a}_{i}, \omega\right\rangle\right) \\
T(f)=\left\{\omega \in \mathbb{R}^{n}: \max _{i=1}^{m}\left(c_{i}+\left\langle a_{i}, \omega\right\rangle\right) \text { is attained } \geq \text { twice }\right\}
\end{gathered}
$$

Example
$f=(-1) \oplus(y) \oplus(x) \oplus(x \odot y) \oplus((-1) \odot x \odot x)$
$A=\left(\begin{array}{lllll}0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 & 0\end{array}\right), c=(-1,0,0,0,-1)$.

Tropical hypersurfaces

How do solutions to a tropical polynomial system look?

$$
\begin{gathered}
f_{1}=0 \odot x \oplus 0 \odot y \oplus 0 \\
f_{2}=(-1) \odot x^{\odot 2} \odot y \oplus(-1) \odot x^{\odot 2} \oplus 0 \odot y^{\odot 2}
\end{gathered}
$$

The intersection points are dual to the mixed cells in the subdivision of $\operatorname{New}\left(f_{1}\right)+\operatorname{New}\left(f_{2}\right)$ using the lift $(0,0,0,-1,-1,0)$

Mixed volumes

Definition

Let $C_{1}, C_{2}, \ldots, C_{n} \subseteq \mathbb{R}^{n}$ be bounded convex sets. The function

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

$$
\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mapsto \operatorname{Volume}\left(\lambda_{1} C_{1}+\cdots+\lambda_{n} C_{n}\right)
$$

is polynomial in the variables $\lambda_{1}, \ldots, \lambda_{n}$. The coefficient of $\lambda_{1} \cdots \lambda_{n}$ is called the mixed volume of C_{1}, \ldots, C_{n}.

Example

$$
\begin{gathered}
\operatorname{Vol}\left(\lambda_{1} \cdot \Delta+\lambda_{2} \cdot \Delta\right)=\operatorname{Vol}\left(\left(\lambda_{1}+\lambda_{2}\right) \cdot \Delta\right)= \\
\left(\lambda_{1}+\lambda_{2}\right)^{2} \operatorname{Vol}(\square)=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)^{2}=\frac{1}{2} \lambda_{1}^{2}+1 \lambda_{1} \lambda_{2}+\frac{1}{2} \lambda_{2}^{2}
\end{gathered}
$$

Theorem (Bernstein,Kusnirenko,Khovanskii 1975)
If $f_{1}, \ldots, f_{n} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are generic then
$\left|V\left(\left\langle f_{1}, \ldots, f_{n}\right\rangle\right) \cap(\mathbb{C} \backslash\{0\})^{n}\right|=\operatorname{MixVol}\left(\operatorname{New}\left(f_{1}\right), \ldots, \operatorname{New}\left(f_{n}\right)\right)$.

Specifications

We have a numerical algorithm with these specifications:
Algorithm (Numerical homotopy continuation)
Input: $g_{1}, \ldots, g_{n} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ generic start system All solutions $V\left(g_{1}\right) \cap \cdots \cap V\left(g_{n}\right) \subseteq \mathbb{C}^{n}$ $f_{1}, \ldots, f_{n} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ target system.
Output: All isolated solutions in $V\left(f_{1}\right) \cap \cdots \cap V\left(f_{n}\right)$

We want a tropical (combinatorial) algorithm:
Algorithm (Tropical homotopy continuation)
Input: $g_{1}, \ldots, g_{n} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ generic start system The finite set $T\left(g_{1}\right) \cap \cdots \cap T\left(g_{n}\right) \subseteq \mathbb{R}^{n}$ $f_{1}, \ldots, f_{n} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ target system.
Output: All isolated solutions in $T\left(f_{1}\right) \cap \cdots \cap T\left(f_{n}\right)$

How solutions move around as coefficients change

$$
A_{1}=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 2 & 0 & 1
\end{array}\right) \text { and } A_{2}=\left(\begin{array}{llll}
0 & 0 & 1 & 2 \\
0 & 1 & 1 & 0
\end{array}\right) .
$$

Choosing $w_{1}=(0,0,0,-2)^{t}$ and $w_{2}=(0,-3,-4,-8)^{t}$ we get the two tropical hypersurfaces shown in the middle picture.

Now change coefficients:

How do we get started?

Notice: if height goes to $-\infty$ pieces break off.

This allows us to do a total degree homotopy to get started:

Which lifts give rise to the cell " 3 "?

One inequality is $(0,1,2,-3,-1,0,1,0) \cdot \omega \geq 0$

$$
\left(\begin{array}{llll|llll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 2 \\
0 & 2 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

- One inequality for each "additional" column.
- Inequality set can be updated efficiently as cell changes.

Path tracking. Paths collide.

But can be treated independently with Reverse Search [Avis, Fukuda].

- Split cycle-free directed graph into a forest.
- Compute each tree recursively.

Regeneration (Hauenstein,Sommese,Wampler,2011)

Suppose we want to solve $f_{1}=\cdots=f_{n}=0$.

- Choose random linear polynomials I_{1}, \ldots, I_{n}

Now solve

- $I_{1}=I_{2}=\cdots=I_{n}=0$
- $f_{1}=I_{2}=\cdots=I_{n}=0$
- $f_{1}=f_{2}=\cdots=I_{n}=0$
- $f_{1}=f_{2}=\cdots=f_{n}=0$

Single step:
Choose $\operatorname{deg}\left(f_{2}\right)$ random linear polynomials $\mathcal{L}_{1}, \ldots, \mathcal{L}_{\operatorname{deg}\left(f_{2}\right)}$. Do homotopies:

$$
\begin{aligned}
& f_{1}=I_{2}=\cdots=I_{n}=0 f_{1}=\mathcal{L}_{i}=\cdots=I_{n}=0 \text { for } i=1, \ldots \operatorname{deg}\left(f_{2}\right) \\
& f_{1}=\mathcal{L}_{1} \cdots \mathcal{L}_{\operatorname{deg}\left(f_{2}\right)}=I_{3}=\cdots=I_{n}=0
\end{aligned} \rightarrow f_{1}=f_{2}=I_{3}=\cdots=I_{n}=0
$$

Tropical Regeneration Procedure

Goal: Solve generic system for the two Newton polytopes i.e. find mixed volume of

Tropical Regeneration Procedure

Tropical Regeneration Procedure

We have solved a generic system. The mixed volume is 3 .

Mixed cell and volume computation (\#P hard)

Useful for polyhedral homotopies (Huber-Sturmfels).
2006 Mizutani, Takeda, Kojima: Dynamic enumeration
2011 Lee, Li: Better implementation
2014 Malajovich: First tropical method
2015 Jensen: Tropical homotopy continuation (Gfan)
The new algorithm is Exact, Memory-less and Parallelisable.

Example	n	Mixed vol.	1 thr.	16 thr. *	Mal. (8)	Lee,Li (1)
Cyclic-15	15	35243520	461.3	35.8	4070	36428
Noon-20	20	3486784361	59.0	4.8	6460	1109
Chand.-21	21	1048576	151.6	11.5	7580	1067
Kats.-17	18	131070	4.5	0.5	5310	75619
Eco-22	22	1048576	102.7	8.5	8750	

Timings in seconds. *16 threads - Thanks to Bjarne Knudsen!

Complexity

Malajovich' algorithm (2014) works with "probability 1".

- "Computing mixed volume and all mixed cells in quermassintegral time"

He provides complexity bounds based on geometry.

Similar results hold for the tropical homotopy:
Theorem (Jensen)
The number of edges in $T\left(A_{1}, \omega_{1}\right) \wedge \cdots \wedge T\left(A_{n-1}, \omega_{n-1}\right)$ is

$$
\leq 3 \cdot \operatorname{MixVol}\left(\operatorname{conv}\left(A_{1}\right), \ldots, \operatorname{conv}\left(A_{n-1}\right), \sum_{i=1}^{n-1} \operatorname{conv}\left(A_{i}\right)\right)
$$

under the assumption that $\sum_{i=1}^{n-1} \operatorname{conv}\left(A_{i}\right)$ is full-dimensional and $\omega_{1}, \ldots, \omega_{n-1}$ are generic.

Are all isolated solutions found?

Algorithm (Tropical homotopy continuation)

$$
\begin{aligned}
& \text { Input: } g_{1}, \ldots, g_{n} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \text { generic start system } \\
& \text { The finite set } T\left(g_{1}\right) \cap \ldots \cap T\left(g_{n}\right) \subseteq \mathbb{R}^{n} \\
& \\
& \text { Output: } \\
& \text { (non-generic) } f_{1}, \ldots, f_{n} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \text { target. isolated solutions in } T\left(f_{1}\right) \cap \cdots \cap T\left(f_{n}\right)
\end{aligned}
$$

Based on:

Theorem (Osserman and Payne, 2013)
$\operatorname{codim}\left(T\left(h_{1}\right) \cap T\left(h_{2}\right)\right) \leq \operatorname{codim}\left(T\left(h_{1}\right)\right)+\operatorname{codim}\left(T\left(h_{2}\right)\right)$

However, it follows from complexity results of Theobald that

- It is NP-hard to decide if a solution is isolated.

Future directions: tropical "Smale" problem

Smale's 17th problem:

- "Solving polynomial equations in polynomial time in the average case"
resolved in 2016 (P. Lairez and others).
Tropical version:
- Is there a polynomial time algorithm for finding a single mixed cell?

Ref.: Codenotti, Walther: "Finding a fully mixed cell", 2019
Note: existence of a cell is in P (matroid intersection!).

Earlier results relating tropical and non-tropical complexity:
"Log-barrier interior point methods are not strongly polynomial" by Allamigeon, Benchimol, Gaubert, Joswig, 2017

References

- Malajovich: "Computing mixed volume and all mixed cells in quermassintegral time" arXiv (2014)
- Jensen: "Tropical homotopy continuation" arXiv (2016)
- Jensen: "An implementation of exact mixed volume computation" ICMS (2016)

