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Definition: t − (v , k , λ) design
A t-design is an incidence structure on v points and b blocks,
such that

i) every block is incident with exactly k points,
ii) any t set of points is contained in exactly λ blocks.

We say a design is simple if all the blocks are pairwise different.

Theorem
Any t − (v , k , λ)-design is also an s − (v , k , λs) design for s ≤ t .
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We often describe a design by its incidence matrix.

Blocks
Po

in
ts



1 1 1 1 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0
1 0 1 0 0 1 0 0 1 1
0 1 0 1 0 0 1 0 1 1
0 0 1 0 1 0 1 1 1 0
0 0 0 1 1 1 0 1 0 1

 = M

2 − (6,3,2)
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If M is the incidence matrix of an 2 − (v , k , λ), then
M = J − M is the incidence matrix of an
2 − (v , v − k , λ) design.

This gives us a two color mosaic.
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Definition (informal): Mosaic
A c-color mosaic is a collection of c designs with incidence
matrices Mi such that

c∑
i=1

Mi = J.

For c = 2 we have mosaics for any parameters for
which designs exist.
Less obvious as soon as c > 2.
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2 − (7,3,1)⊕ 2 − (7,3,1)⊕ 2 − (7,1,0)
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Symmetric Design
A design that has as many blocks as it has points, v = b, is
called symmetric.

Let M be the incidence matrix of a symmetric
2 − (v , k , λ) design, then MT describes a 2 − (v , k , λ)
design.
In other words, every pair of blocks of a symmetric
design intersects in λ points.
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For c = 3 colors, a mosaic exists iff there exist two
designs, such that the sum of their incidence matrices
describes a design.

M1 + M2 = M3

Also, M1 + M3 = M2 and M2 + M3 = M1
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The blocks of the design M1 + M2 intersect pairwise in
λ3 = λ1 + λ2 +

2k1k2
v−1 points

We define αi,j =
2ki kj
v−1

2 − (7,3,1)⊕ 2 − (7,1,0) = 2 − (7,4,2)

Here α1,2 = 1
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αi,j = 1
If one of the αi,j = 1 then the design is of the form
2−(4t−1,2t−1, t−1)⊕2−(4t−1,2t−1, t−1)⊕2−(4t−1,1,0).

At least one of the designs has to be the trivial
2 − (v ,1,0) design.
Therefore, there is a design M in the mosaic such that
M + I is a design as well. Such designs have been
shown to be skew-Hadamard in "Nesting Symmetric
Designs", Irish Math. Soc. Bulletin Number 72, Winter
2013, 71–74, P. Ó Catháin
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α1,2 = α1,3

If two parameters α1,2 = α1,3 are identical then the mosaic is
skew-Hadamard as well.

We see that k2 = k3 = k , and hence we have designs
with parameters 2 − (v , k , k(k−1)

v−1 ) and
2 − (v ,2k , 2k(2k−1)

v−1 ).

Hence v − 1 divides 2k(2k − 1)− 4(k(k − 1)) = 2k .
And it follows that k = v−1

2 .
Therefore k1 = 1 and the first design is trivial.
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αi,j v k1 λ1 k2 λ2

3 211 15 1 21 2 BRC

4 31 6 1 10 3 ?

5 43 7 1 15 5 PP 6
5 991 45 2 55 3
5 1191 35 1 85 6

6 31 6 1 15 7 ?
6 106 15 2 21 4
6 133 12 1 33 8

7 43 7 1 21 10 PP 6
7 2731 91 3 105 4
7 2927 77 2 133 6
7 3907 63 1 217 12 BRC

8 67 12 2 22 7
8 91 10 1 36 14

αi,j v k1 λ1 k2 λ2

8 253 28 3 36 5
8 381 20 1 76 15

9 71 15 3 21 6
9 79 13 2 27 9
9 111 11 1 45 18 PP 10
9 5815 153 4 171 5
9 6787 117 2 261 10
9 9703 99 1 441 20

10 31 10 3 15 7 ?
10 91 10 1 45 22
10 211 15 1 70 23
10 496 45 4 55 6
10 521 40 3 65 8
10 596 35 2 85 12
10 871 30 1 145 24
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Bruck–Ryser–Chowla for designs
If a symmetric 2 − (v , k , λ) design exists, then

n = k − λ is a square if v is even, or

X 2 − (k − λ)Y 2 = (−1)
v−1

2 λZ 2 has a non-trivial solution
if v is odd.
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Bruck–Ryser–Chowla for matrices
If a rational v × v matrix M exists, such that
MMT = λJ + (k − λ)I , then

n = k − λ is a square if v is even, or

X 2 − (k − λ)Y 2 = (−1)
v−1

2 λZ 2 has a non-trivial solution
if v is odd.
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Let M1,M2 be parts of a mosaic.
Try Q = M1MT

2 + I, then

QQT = (M1MT
2 M2MT

1 ) + M1MT
2 + M2MT

1 + I
= M1(n2I + λ2J)MT

1 + α1,2(J − I) + I
= n2n1I + n2λ1J + λ2k2

1 J + α1,2(J − I) + I
= (n2λ1 + λ2k2

1 + α1,2)J + (n2n1 − α1,2 + 1)I

Now an analogous argument to the classical BRC
tells us that if v is even, then

n2n1 − α1,2 + 1

is a perfect square.
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Let’s consider the following hypothetical mosaic on
v = 2380 points

2−(2380,183,14)⊕2−(2380,793,264)⊕2−(2380,1404,828).
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BRC does not exclude these designs, since

n1 = 169 = 132, n2 = 529 = 232, n3 = 576 = 242.
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Let’s consider the following hypothetical mosaic on
v = 2380 points

2−(2380,183,14)⊕2−(2380,793,264)⊕2−(2380,1404,828).

BRC does not exclude these designs, since

n1 = 169 = 132, n2 = 529 = 232, n3 = 576 = 242.

But the new criterion actually shows that the above
mosaic can not exist since

n2n1−α1,2+1 = 529·169−122+1 = 89280 = 26·32·5·31

is not a perfect square.
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The BRC for mosaics can also be extended to the odd
case where it also leads to solving a diophantine
equation.

The next step is to systematically check which
parameter sets are still admissible after applying the
new exclusion criteria.
The smalles open case still seems to be

2 − (31,6,1)⊕ 2 − (31,10,3)⊕ 2 − (31,15,7).

It stubbornly refuses to give up.
We plan on trying to push as much as possible of this
machinery into the non-symmetric case.
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Thank You!
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