

Symmetric 3-Mosaics

in collaboration with Padraig O'Cathain Oktay Olmez

by

Oliver W. Gnilke Aalborg University, Denmark

NorCom 2019, August 6, 2019

Designs & Mosaics

Symmetric Mosaics

Bruck-Ryser-Chowla

Conclusions

Designs & Mosaics

Designs

Definition: $t - (v, k, \lambda)$ design

A *t*-design is an incidence structure on *v* points and *b* blocks, such that

- i) every block is incident with exactly k points,
- ii) any *t* set of points is contained in exactly λ blocks.

We say a design is simple if all the blocks are pairwise different.

Designs

Definition: $t - (v, k, \lambda)$ design

A *t*-design is an incidence structure on *v* points and *b* blocks, such that

- i) every block is incident with exactly k points,
- ii) any *t* set of points is contained in exactly λ blocks.

We say a design is simple if all the blocks are pairwise different.

Theorem

Any $t - (v, k, \lambda)$ -design is also an $s - (v, k, \lambda_s)$ design for $s \le t$.

We often describe a design by its incidence matrix.

Complements

If *M* is the incidence matrix of an 2 - (v, k, λ), then
 M
 M = J - M is the incidence matrix of an
 2 - (v, v - k, λ) design.

Complements

- If *M* is the incidence matrix of an 2 (ν, k, λ), then *M* = J - M is the incidence matrix of an 2 - (ν, ν - k, λ̄) design.
- This gives us a two color mosaic.

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ 1 & 1 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 & 1 & 2 & 1 & 1 & 1 & 2 \\ 2 & 2 & 2 & 1 & 1 & 1 & 2 & 1 & 2 & 1 \end{bmatrix}$$

Complements

- If *M* is the incidence matrix of an $2 (v, k, \lambda)$, then $\overline{M} = J - M$ is the incidence matrix of an $2 - (v, v - k, \overline{\lambda})$ design.
- This gives us a two color mosaic.

Definition (informal): Mosaic

A *c*-color mosaic is a collection of *c* designs with incidence matrices M_i such that

$$\sum_{i=1}^{c} M_i = J.$$

Definition (informal): Mosaic

A *c*-color mosaic is a collection of *c* designs with incidence matrices M_i such that

$$\sum_{i=1}^{c} M_i = J.$$

For c = 2 we have mosaics for any parameters for which designs exist.

Definition (informal): Mosaic

A *c*-color mosaic is a collection of *c* designs with incidence matrices M_i such that

$$\sum_{i=1}^{c} M_i = J.$$

- For c = 2 we have mosaics for any parameters for which designs exist.
- Less obvious as soon as c > 2.

3-Color Example

Symmetric Mosaics

Symmetric Mosaics

Symmetric Design

A design that has as many blocks as it has points, v = b, is called symmetric.

Symmetric Design

A design that has as many blocks as it has points, v = b, is called symmetric.

- Let *M* be the incidence matrix of a symmetric
 2 (v, k, λ) design, then M^T describes a 2 (v, k, λ) design.
- In other words, every pair of blocks of a symmetric design intersects in *\lambda* points.

For c = 3 colors, a mosaic exists iff there exist two designs, such that the sum of their incidence matrices describes a design.

$$M_1 + M_2 = \overline{M_3}$$

For c = 3 colors, a mosaic exists iff there exist two designs, such that the sum of their incidence matrices describes a design.

$$M_1 + M_2 = \overline{M_3}$$

Also,
$$M_1 + M_3 = \overline{M_2}$$
 and $M_2 + M_3 = \overline{M_1}$

A new parameter

The blocks of the design $M_1 + M_2$ intersect pairwise in $\overline{\lambda_3} = \lambda_1 + \lambda_2 + \frac{2k_1k_2}{\nu-1}$ points

A new parameter

The blocks of the design $M_1 + M_2$ intersect pairwise in $\overline{\lambda_3} = \lambda_1 + \lambda_2 + \frac{2k_1k_2}{\nu-1}$ points

• We define
$$\alpha_{i,j} = \frac{2k_ik_j}{v-1}$$

A new parameter

The blocks of the design $M_1 + M_2$ intersect pairwise in $\overline{\lambda_3} = \lambda_1 + \lambda_2 + \frac{2k_1k_2}{\nu-1}$ points

• We define
$$\alpha_{i,j} = \frac{2k_ik_j}{v-1}$$

$\alpha_{i,j} = 1$

If one of the $\alpha_{i,j} = 1$ then the design is of the form $2-(4t-1, 2t-1, t-1)\oplus 2-(4t-1, 2t-1, t-1)\oplus 2-(4t-1, 1, 0)$.

At least one of the designs has to be the trivial 2 - (v, 1, 0) design. Therefore, there is a design *M* in the mosaic such that *M* + *I* is a design as well. Such designs have been shown to be skew-Hadamard in "Nesting Symmetric Designs", Irish Math. Soc. Bulletin Number 72, Winter 2013, 71–74, P. Ó Catháin

$\alpha_{1,2} = \alpha_{1,3}$

If two parameters $\alpha_{1,2} = \alpha_{1,3}$ are identical then the mosaic is skew-Hadamard as well.

We see that $k_2 = k_3 = k$, and hence we have designs with parameters $2 - (v, k, \frac{k(k-1)}{v-1})$ and $2 - (v, 2k, \frac{2k(2k-1)}{v-1})$.

$\alpha_{1,2} = \alpha_{1,3}$

If two parameters $\alpha_{1,2} = \alpha_{1,3}$ are identical then the mosaic is skew-Hadamard as well.

- We see that $k_2 = k_3 = k$, and hence we have designs with parameters $2 - (v, k, \frac{k(k-1)}{v-1})$ and $2 - (v, 2k, \frac{2k(2k-1)}{v-1})$.
- Hence v 1 divides 2k(2k 1) 4(k(k 1)) = 2k. And it follows that $k = \frac{v-1}{2}$.

$\alpha_{1,2} = \alpha_{1,3}$

If two parameters $\alpha_{1,2} = \alpha_{1,3}$ are identical then the mosaic is skew-Hadamard as well.

- We see that $k_2 = k_3 = k$, and hence we have designs with parameters $2 - (v, k, \frac{k(k-1)}{v-1})$ and $2 - (v, 2k, \frac{2k(2k-1)}{v-1})$.
- Hence v 1 divides 2k(2k 1) 4(k(k 1)) = 2k. And it follows that $k = \frac{v-1}{2}$.
- For the three the first design is trivial.

Admissible Parameters

$\alpha_{i,j}$	V	<i>k</i> 1	λ_1	k ₂	λ_2		$\alpha_{i,j}$	V	k_1	λ_1	k ₂	λ_2	
3	211	15	1	21	2	BRC	8	253	28	3	36	5	
4	31	6	1	10	3	?	8	381	20	1	76	15	
5 5 5	43 991 1191	7 45 35	1 2 1	15 55 85	5 3 6	PP 6	9 9 9	71 79 111 5815	15 13 11	3 2 1 1	21 27 45	6 9 18	PP 10
6 6	31 106	6 15	1	15 21	7 4	?	9 9 9	6787 9703	117 99	2 1	261 441	10 20	
	43 2731 2927	7 91 77	1 3 2	21 105 133	8 10 4 6	PP 6	10 10 10 10	31 91 211 496	10 10 15 45	3 1 1 4	15 45 70 55	7 22 23 6	?
7 8 8	3907 67 91	63 12 10	1 2 1	217 22 36	12 7 14	BRC	10 10 10	521 596 871	40 35 30	3 2 1	65 85 145	8 12 24	

Bruck–Ryser–Chowla

Bruck-Ryser-Chowla

Bruck–Ryser–Chowla for designs

If a symmetric $2 - (v, k, \lambda)$ design exists, then

 $n = k - \lambda \quad \text{is a square if } v \text{ is even, or}$ $X^{2} - (k - \lambda)Y^{2} = (-1)^{\frac{v-1}{2}}\lambda Z^{2} \quad \text{has a non-trivial solution}$ if v is odd.

Bruck–Ryser–Chowla for matrices

If a rational $v \times v$ matrix M exists, such that $MM^T = \lambda J + (k - \lambda)I$, then

 $n = k - \lambda \quad \text{is a square if } v \text{ is even, or}$ $X^2 - (k - \lambda)Y^2 = (-1)^{\frac{v-1}{2}}\lambda Z^2 \quad \text{has a non-trivial solution}$ if v is odd.

BRC for mosaics (v even)

- Let M_1, M_2 be parts of a mosaic.
- Try $Q = M_1 M_2^T + I$, then

$$QQ^{T} = (M_{1}M_{2}^{T}M_{2}M_{1}^{T}) + M_{1}M_{2}^{T} + M_{2}M_{1}^{T} + I$$

= $M_{1}(n_{2}I + \lambda_{2}J)M_{1}^{T} + \alpha_{1,2}(J - I) + I$
= $n_{2}n_{1}I + n_{2}\lambda_{1}J + \lambda_{2}k_{1}^{2}J + \alpha_{1,2}(J - I) + I$
= $(n_{2}\lambda_{1} + \lambda_{2}k_{1}^{2} + \alpha_{1,2})J + (n_{2}n_{1} - \alpha_{1,2} + 1)I$

Now an analogous argument to the classical BRC tells us that if v is even, then

$$n_2n_1 - \alpha_{1,2} + 1$$

is a perfect square.

Something new

 Let's consider the following hypothetical mosaic on v = 2380 points

 $2-(2380,183,14)\oplus 2-(2380,793,264)\oplus 2-(2380,1404,828).$

Something new

Let's consider the following hypothetical mosaic on
 v = 2380 points

 $2-(2380, 183, 14) \oplus 2-(2380, 793, 264) \oplus 2-(2380, 1404, 828).$

BRC does not exclude these designs, since

$$n_1 = 169 = 13^2$$
, $n_2 = 529 = 23^2$, $n_3 = 576 = 24^2$.

Something new

Let's consider the following hypothetical mosaic on
 v = 2380 points

 $2-(2380, 183, 14)\oplus 2-(2380, 793, 264)\oplus 2-(2380, 1404, 828).$

BRC does not exclude these designs, since

$$n_1 = 169 = 13^2$$
, $n_2 = 529 = 23^2$, $n_3 = 576 = 24^2$.

But the new criterion actually shows that the above mosaic can not exist since

 $n_2n_1 - \alpha_{1,2} + 1 = 529 \cdot 169 - 122 + 1 = 89280 = 2^6 \cdot 3^2 \cdot 5 \cdot 31$

is not a perfect square.

The BRC for mosaics can also be extended to the odd case where it also leads to solving a diophantine equation.

- The BRC for mosaics can also be extended to the odd case where it also leads to solving a diophantine equation.
- The next step is to systematically check which parameter sets are still admissible after applying the new exclusion criteria.

- The BRC for mosaics can also be extended to the odd case where it also leads to solving a diophantine equation.
- The next step is to systematically check which parameter sets are still admissible after applying the new exclusion criteria.
- The smalles open case still seems to be

 $2 - (31, 6, 1) \oplus 2 - (31, 10, 3) \oplus 2 - (31, 15, 7).$

It stubbornly refuses to give up.

- The BRC for mosaics can also be extended to the odd case where it also leads to solving a diophantine equation.
- The next step is to systematically check which parameter sets are still admissible after applying the new exclusion criteria.
- The smalles open case still seems to be

 $2 - (31, 6, 1) \oplus 2 - (31, 10, 3) \oplus 2 - (31, 15, 7).$

It stubbornly refuses to give up.

We plan on trying to push as much as possible of this machinery into the non-symmetric case.

Thank You!