Symmetric 3-Mosaics

in collaboration with Padraig O'Cathain Oktay Olmez

Oliver W. Gnilke

Aalborg University, Denmark

Designs \& Mosaics

Symmetric Mosaics

Bruck-Ryser-Chowla

Conclusions

Designs \& Mosaics

Designs

Definition: $t-(v, k, \lambda)$ design

A t-design is an incidence structure on v points and b blocks, such that
i) every block is incident with exactly k points,
ii) any t set of points is contained in exactly λ blocks.

We say a design is simple if all the blocks are pairwise different.

Designs

Definition: $t-(v, k, \lambda)$ design

A t-design is an incidence structure on v points and b blocks, such that
i) every block is incident with exactly k points,
ii) any t set of points is contained in exactly λ blocks.

We say a design is simple if all the blocks are pairwise different.

Theorem

Any $t-(v, k, \lambda)$-design is also an $s-\left(v, k, \lambda_{s}\right)$ design for $s \leq t$.

Example

:- We often describe a design by its incidence matrix.

Blocks

$$
. \stackrel{\left[\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline
\end{array}\left[\begin{array}{lllllll}
\circ \\
0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]=M\right.}{ } \quad 2-(6,3,2)
$$

Complements

:- If M is the incidence matrix of an $2-(v, k, \lambda)$, then $\bar{M}=J-M$ is the incidence matrix of an $2-(v, v-k, \bar{\lambda})$ design.

Complements

:- If M is the incidence matrix of an $2-(v, k, \lambda)$, then $\bar{M}=J-M$ is the incidence matrix of an $2-(v, v-k, \bar{\lambda})$ design.
:- This gives us a two color mosaic.

$$
\left[\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\
1 & 1 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 2 \\
1 & 2 & 1 & 2 & 2 & 1 & 2 & 2 & 1 & 1 \\
2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 1 & 1 \\
2 & 2 & 1 & 2 & 1 & 2 & 1 & 1 & 1 & 2 \\
2 & 2 & 2 & 1 & 1 & 1 & 2 & 1 & 2 & 1
\end{array}\right]
$$

Complements

:- If M is the incidence matrix of an $2-(v, k, \lambda)$, then $\bar{M}=J-M$ is the incidence matrix of an $2-(v, v-k, \bar{\lambda})$ design.
:- This gives us a two color mosaic.

Mosaics

Definition (informal): Mosaic

A c-color mosaic is a collection of c designs with incidence matrices M_{i} such that

$$
\sum_{i=1}^{c} M_{i}=J
$$

Mosaics

Definition (informal): Mosaic

A c-color mosaic is a collection of c designs with incidence matrices M_{i} such that

$$
\sum_{i=1}^{c} M_{i}=J
$$

-. For $c=2$ we have mosaics for any parameters for which designs exist.

Mosaics

Definition (informal): Mosaic

A c-color mosaic is a collection of c designs with incidence matrices M_{i} such that

$$
\sum_{i=1}^{c} M_{i}=J
$$

- For $c=2$ we have mosaics for any parameters for which designs exist.
" Less obvious as soon as $c>2$.

3-Color Example

Symmetric Mosaics

Symmetric Design

A design that has as many blocks as it has points, $v=b$, is called symmetric.

Symmetric Design

A design that has as many blocks as it has points, $v=b$, is called symmetric.
:- Let M be the incidence matrix of a symmetric $2-(v, k, \lambda)$ design, then M^{T} describes a $2-(v, k, \lambda)$ design.
:- In other words, every pair of blocks of a symmetric design intersects in λ points.

Symmetric 3-Mosaics

:- For $c=3$ colors, a mosaic exists iff there exist two designs, such that the sum of their incidence matrices describes a design.

$$
M_{1}+M_{2}=\overline{M_{3}}
$$

Symmetric 3-Mosaics

:- For $c=3$ colors, a mosaic exists iff there exist two designs, such that the sum of their incidence matrices describes a design.

$$
M_{1}+M_{2}=\overline{M_{3}}
$$

: Also, $M_{1}+M_{3}=\overline{M_{2}}$ and $M_{2}+M_{3}=\overline{M_{1}}$

A new parameter

The blocks of the design $M_{1}+M_{2}$ intersect pairwise in $\overline{\lambda_{3}}=\lambda_{1}+\lambda_{2}+\frac{2 k_{1} k_{2}}{v-1}$ points

A new parameter

:- The blocks of the design $M_{1}+M_{2}$ intersect pairwise in $\overline{\lambda_{3}}=\lambda_{1}+\lambda_{2}+\frac{2 k_{1} k_{2}}{v-1}$ points
= We define $\alpha_{i, j}=\frac{2 k_{i} k_{j}}{v-1}$

A new parameter

:- The blocks of the design $M_{1}+M_{2}$ intersect pairwise in $\overline{\lambda_{3}}=\lambda_{1}+\lambda_{2}+\frac{2 k_{1} k_{2}}{v-1}$ points
=We define $\alpha_{i, j}=\frac{2 k_{i} k_{j}}{v-1}$

" Here $\alpha_{1,2}=1$

The case $\alpha_{i, j}=1$

$\alpha_{i, j}=1$

If one of the $\alpha_{i, j}=1$ then the design is of the form
$2-(4 t-1,2 t-1, t-1) \oplus 2-(4 t-1,2 t-1, t-1) \oplus 2-(4 t-1,1,0)$.
:- At least one of the designs has to be the trivial $2-(v, 1,0)$ design.
Therefore, there is a design M in the mosaic such that $M+I$ is a design as well. Such designs have been shown to be skew-Hadamard in "Nesting Symmetric Designs", Irish Math. Soc. Bulletin Number 72, Winter 2013, 71-74, P. Ó Catháin

The case $\alpha_{1,2}=\alpha_{1,3}$

$\alpha_{1,2}=\alpha_{1,3}$

If two parameters $\alpha_{1,2}=\alpha_{1,3}$ are identical then the mosaic is skew-Hadamard as well.
:- We see that $k_{2}=k_{3}=k$, and hence we have designs with parameters $2-\left(v, k, \frac{k(k-1)}{v-1}\right)$ and

$$
2-\left(v, 2 k, \frac{2 k(2 k-1)}{v-1}\right)
$$

The case $\alpha_{1,2}=\alpha_{1,3}$

$\alpha_{1,2}=\alpha_{1,3}$

If two parameters $\alpha_{1,2}=\alpha_{1,3}$ are identical then the mosaic is skew-Hadamard as well.
:- We see that $k_{2}=k_{3}=k$, and hence we have designs with parameters $2-\left(v, k, \frac{k(k-1)}{v-1}\right)$ and

$$
2-\left(v, 2 k, \frac{2 k(2 k-1)}{v-1}\right) .
$$

- Hence $v-1$ divides $2 k(2 k-1)-4(k(k-1))=2 k$. And it follows that $k=\frac{v-1}{2}$.

The case $\alpha_{1,2}=\alpha_{1,3}$

$\alpha_{1,2}=\alpha_{1,3}$

If two parameters $\alpha_{1,2}=\alpha_{1,3}$ are identical then the mosaic is skew-Hadamard as well.
:- We see that $k_{2}=k_{3}=k$, and hence we have designs with parameters $2-\left(v, k, \frac{k(k-1)}{v-1}\right)$ and
$2-\left(v, 2 k, \frac{2 k(2 k-1)}{v-1}\right)$.
". Hence $v-1$ divides $2 k(2 k-1)-4(k(k-1))=2 k$. And it follows that $k=\frac{v-1}{2}$.
:- Therefore $k_{1}=1$ and the first design is trivial.

Admissible Parameters

$\alpha_{i, j}$	v	k_{1}	λ_{1}	k_{2}	λ_{2}	
3	211	15	1	21	2	BRC
4	31	6	1	10	3	$?$
5	43	7	1	15	5	PP 6
5	991	45	2	55	3	
5	1191	35	1	85	6	
6	31	6	1	15	7	$?$
6	106	15	2	21	4	
6	133	12	1	33	8	
7	43	7	1	21	10	PP 6
7	2731	91	3	105	4	
7	2927	77	2	133	6	
7	3907	63	1	217	12	BRC
8	67	12	2	22	7	
8	91	10	1	36	14	

$\alpha_{i, j}$	v	k_{1}	λ_{1}	k_{2}	λ_{2}	
8	253	28	3	36	5	
8	381	20	1	76	15	
9	71	15	3	21	6	
9	79	13	2	27	9	
9	111	11	1	45	18	PP 10
9	5815	153	4	171	5	
9	6787	117	2	261	10	
9	9703	99	1	441	20	
10	31	10	3	15	7	$?$
10	91	10	1	45	22	
10	211	15	1	70	23	
10	496	45	4	55	6	
10	521	40	3	65	8	
10	596	35	2	85	12	
10	871	30	1	145	24	

Bruck-Ryser-Chowla

BRC

Bruck-Ryser-Chowla for designs

If a symmetric $2-(v, k, \lambda)$ design exists, then

$$
\begin{aligned}
n=k-\lambda & \text { is a square if } v \text { is even, or } \\
X^{2}-(k-\lambda) Y^{2}=(-1)^{\frac{v-1}{2}} \lambda Z^{2} & \text { has a non-trivial solution } \\
& \text { if } v \text { is odd. }
\end{aligned}
$$

BRC

Bruck-Ryser-Chowla for matrices

If a rational $v \times v$ matrix M exists, such that $M M^{T}=\lambda J+(k-\lambda) I$, then

$$
\begin{aligned}
n=k-\lambda & \text { is a square if } v \text { is even, or } \\
X^{2}-(k-\lambda) Y^{2}=(-1)^{\frac{v-1}{2}} \lambda Z^{2} & \text { has a non-trivial solution } \\
& \text { if } v \text { is odd. }
\end{aligned}
$$

BRC for mosaics (v even)

: Let M_{1}, M_{2} be parts of a mosaic.
$\therefore \quad$ Try $Q=M_{1} M_{2}^{T}+I$, then

$$
\begin{aligned}
Q Q^{T} & =\left(M_{1} M_{2}^{T} M_{2} M_{1}^{T}\right)+M_{1} M_{2}^{T}+M_{2} M_{1}^{T}+I \\
& =M_{1}\left(n_{2} I+\lambda_{2} J\right) M_{1}^{T}+\alpha_{1,2}(J-I)+I \\
& =n_{2} n_{1} I+n_{2} \lambda_{1} J+\lambda_{2} k_{1}^{2} J+\alpha_{1,2}(J-I)+I \\
& =\left(n_{2} \lambda_{1}+\lambda_{2} k_{1}^{2}+\alpha_{1,2}\right) J+\left(n_{2} n_{1}-\alpha_{1,2}+1\right) I
\end{aligned}
$$

:- Now an analogous argument to the classical BRC tells us that if v is even, then

$$
n_{2} n_{1}-\alpha_{1,2}+1
$$

is a perfect square.

Something new

:- Let's consider the following hypothetical mosaic on $v=2380$ points
$2-(2380,183,14) \oplus 2-(2380,793,264) \oplus 2-(2380,1404,828)$.

Something new

:- Let's consider the following hypothetical mosaic on $v=2380$ points
$2-(2380,183,14) \oplus 2-(2380,793,264) \oplus 2-(2380,1404,828)$.
: BRC does not exclude these designs, since

$$
n_{1}=169=13^{2}, \quad n_{2}=529=23^{2}, \quad n_{3}=576=24^{2} .
$$

Something new

:- Let's consider the following hypothetical mosaic on $v=2380$ points
$2-(2380,183,14) \oplus 2-(2380,793,264) \oplus 2-(2380,1404,828)$.
: BRC does not exclude these designs, since

$$
n_{1}=169=13^{2}, \quad n_{2}=529=23^{2}, \quad n_{3}=576=24^{2} .
$$

:- But the new criterion actually shows that the above mosaic can not exist since
$n_{2} n_{1}-\alpha_{1,2}+1=529 \cdot 169-122+1=89280=2^{6} \cdot 3^{2} \cdot 5 \cdot 31$
is not a perfect square.

Conclusions

Conclusions

:- The BRC for mosaics can also be extended to the odd case where it also leads to solving a diophantine equation.

Conclusions

:- The BRC for mosaics can also be extended to the odd case where it also leads to solving a diophantine equation.
:- The next step is to systematically check which parameter sets are still admissible after applying the new exclusion criteria.

Conclusions

:- The BRC for mosaics can also be extended to the odd case where it also leads to solving a diophantine equation.
:- The next step is to systematically check which parameter sets are still admissible after applying the new exclusion criteria.
:- The smalles open case still seems to be

$$
2-(31,6,1) \oplus 2-(31,10,3) \oplus 2-(31,15,7)
$$

It stubbornly refuses to give up.

Conclusions

:- The BRC for mosaics can also be extended to the odd case where it also leads to solving a diophantine equation.
:- The next step is to systematically check which parameter sets are still admissible after applying the new exclusion criteria.
:- The smalles open case still seems to be

$$
2-(31,6,1) \oplus 2-(31,10,3) \oplus 2-(31,15,7)
$$

It stubbornly refuses to give up.
:- We plan on trying to push as much as possible of this machinery into the non-symmetric case.

Thank You!

