Latin squares and Latin cubes with forbidden entries

Carl Johan Casselgren
Department of Mathematics
Linköping university
carl.johan.casselgren@liu.se

Joint work with L.J. Andrén, K. Markström, L.A. Pham

NORCOM 2019, København, Danmark

Completing partial Latin squares

Def. An $n \times n$ partial Latin square (PLS) is an $n \times n$ array L where each of the symbols $1, \ldots, n$ occurs at most once in every row and column.

Completing partial Latin squares

Def. An $n \times n$ partial Latin square (PLS) is an $n \times n$ array L where each of the symbols $1, \ldots, n$ occurs at most once in every row and column.

If no cell of L is non-empty, then it is a Latin square.

Completing partial Latin squares

Def. An $n \times n$ partial Latin square (PLS) is an $n \times n$ array L where each of the symbols $1, \ldots, n$ occurs at most once in every row and column.

If no cell of L is non-empty, then it is a Latin square.

Def. A Latin square L is a completion of a PLS P if $L(i, j)=P(i, j)$ for every non-empty cell (i, j) of P.

Completing partial Latin squares

Def. An $n \times n$ partial Latin square (PLS) is an $n \times n$ array L where each of the symbols $1, \ldots, n$ occurs at most once in every row and column.

If no cell of L is non-empty, then it is a Latin square.
Def. A Latin square L is a completion of a PLS P if $L(i, j)=P(i, j)$ for every non-empty cell (i, j) of P.

Example.

Completing partial Latin squares

Def. An $n \times n$ partial Latin square (PLS) is an $n \times n$ array L where each of the symbols $1, \ldots, n$ occurs at most once in every row and column.

If no cell of L is non-empty, then it is a Latin square.
Def. A Latin square L is a completion of a PLS P if $L(i, j)=P(i, j)$ for every non-empty cell (i, j) of P.

Example.

$P=$| 1 | | 2 |
| :--- | :--- | :--- |
| | | 3 |
| | 2 | 1 |

Completing partial Latin squares

Def. An $n \times n$ partial Latin square (PLS) is an $n \times n$ array L where each of the symbols $1, \ldots, n$ occurs at most once in every row and column.

If no cell of L is non-empty, then it is a Latin square.

Def. A Latin square L is a completion of a PLS P if $L(i, j)=P(i, j)$ for every non-empty cell (i, j) of P.

Example.

$P=$| 1 | | 2 |
| :--- | :--- | :--- |
| | | 3 |
| | 2 | 1 |

$L=$| 1 | 3 | 2 |
| :--- | :--- | :--- |
| 2 | 1 | 3 |
| 3 | 2 | 1 |

Completing partial Latin squares

Def. An $n \times n$ partial Latin square (PLS) is an $n \times n$ array L where each of the symbols $1, \ldots, n$ occurs at most once in every row and column.

If no cell of L is non-empty, then it is a Latin square.

Def. A Latin square L is a completion of a PLS P if $L(i, j)=P(i, j)$ for every non-empty cell (i, j) of P.

Example.

$P=$| 1 | | 2 |
| :--- | :--- | :--- |
| | | 3 |
| | 2 | 1 |

$L=$| 1 | 3 | 2 |
| :--- | :--- | :--- |
| 2 | 1 | 3 |
| 3 | 2 | 1 |

General problem of completing partial Latin squares is $N P$-complete.

Avoiding arrays

Avoiding Array Problem. Consider a $n \times n$ array A where every cell contains a subset of the symbols in $\{1, \ldots, n\}$. $A(i, j)$ denotes the set of symbols contained in cell (i, j) of A.

Avoiding arrays

Avoiding Array Problem. Consider a $n \times n$ array A where every cell contains a subset of the symbols in $\{1, \ldots, n\}$. $A(i, j)$ denotes the set of symbols contained in cell (i, j) of A.

Def. A Latin square L avoids A if $L(i, j) \notin A(i, j)$ for every $1 \leq i, j \leq n$.

Avoiding arrays

Avoiding Array Problem. Consider a $n \times n$ array A where every cell contains a subset of the symbols in $\{1, \ldots, n\}$. $A(i, j)$ denotes the set of symbols contained in cell (i, j) of A.

Def. A Latin square L avoids A if $L(i, j) \notin A(i, j)$ for every $1 \leq i, j \leq n$.
Generalizes the problem of completing partial Latin squares.

Avoiding arrays

Avoiding Array Problem. Consider a $n \times n$ array A where every cell contains a subset of the symbols in $\{1, \ldots, n\}$. $A(i, j)$ denotes the set of symbols contained in cell (i, j) of A.

Def. A Latin square L avoids A if $L(i, j) \notin A(i, j)$ for every $1 \leq i, j \leq n$.

Generalizes the problem of completing partial Latin squares.

Example.

Avoiding arrays

Avoiding Array Problem. Consider a $n \times n$ array A where every cell contains a subset of the symbols in $\{1, \ldots, n\}$. $A(i, j)$ denotes the set of symbols contained in cell (i, j) of A.

Def. A Latin square L avoids A if $L(i, j) \notin A(i, j)$ for every $1 \leq i, j \leq n$.

Generalizes the problem of completing partial Latin squares.

Example.

$A=$| 1,2 | | 2 |
| :---: | :---: | :---: |
| | 2,3 | 1 |
| | 1,2 | 1,3 |

Avoiding arrays

Avoiding Array Problem. Consider a $n \times n$ array A where every cell contains a subset of the symbols in $\{1, \ldots, n\}$. $A(i, j)$ denotes the set of symbols contained in cell (i, j) of A.

Def. A Latin square L avoids A if $L(i, j) \notin A(i, j)$ for every $1 \leq i, j \leq n$.

Generalizes the problem of completing partial Latin squares.

Example.

$A=$| 1,2 | | 2 |
| :---: | :---: | :---: |
| | 2,3 | 1 |
| | 1,2 | 1,3 |

$L=$| 3 | 2 | 1 |
| :--- | :--- | :--- |
| 2 | 1 | 3 |
| 1 | 3 | 2 |

Completing sparse partial Latin squares

Def. An $n \times n$ PLS P is α-sparse if every row and column contains at most αn non-empty cells and each of the symbols $1, \ldots, n$ occurs at most αn times in P.

Completing sparse partial Latin squares

Def. An $n \times n$ PLS P is α-sparse if every row and column contains at most αn non-empty cells and each of the symbols $1, \ldots, n$ occurs at most αn times in P.

Thm. There is an $\alpha>0$, such that for every even n, if P is an $n \times n$ α-sparse PLS, then P is completable. (Value of $\alpha \operatorname{approx} 10^{-7}$.) [Chetwynd-Häggkvist, Preprint from 1985]

Completing sparse partial Latin squares

Def. An $n \times n$ PLS P is α-sparse if every row and column contains at most αn non-empty cells and each of the symbols $1, \ldots, n$ occurs at most αn times in P.

Thm. There is an $\alpha>0$, such that for every even n, if P is an $n \times n$ α-sparse PLS, then P is completable. (Value of $\alpha \operatorname{approx} 10^{-7}$.) [Chetwynd-Häggkvist, Preprint from 1985]

Proof idea.

Use a specific Latin square L with a lot of intercalates.

$L=$| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 2 | 6 | 4 | 5 |
| 2 | 3 | 1 | 5 | 6 | 4 |
| 4 | 6 | 5 | 1 | 3 | 2 |
| 5 | 4 | 6 | 2 | 1 | 3 |
| 6 | 5 | 4 | 3 | 2 | 1 |

Completing sparse partial Latin squares

Def. An $n \times n$ PLS P is α-sparse if every row and column contains at most αn non-empty cells and each of the symbols $1, \ldots, n$ occurs at most αn times in P.

Thm. There is an $\alpha>0$, such that for every even n, if P is an $n \times n$ α-sparse PLS, then P is completable. (Value of $\alpha \operatorname{approx} 10^{-7}$.) [Chetwynd-Häggkvist, Preprint from 1985]

Proof idea.

Use a specific Latin square L with a lot of intercalates.

$L=$| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 2 | 6 | 4 | 5 |
| 2 | 3 | 1 | 5 | 6 | 4 |
| 4 | 6 | 5 | 1 | 3 | 2 |
| 5 | 4 | 6 | 2 | 1 | 3 |
| 6 | 5 | 4 | 3 | 2 | 1 |

Swap symbols on many intercalates in a systematic way to form a new Latin square L^{\prime} from L that agrees with P.

Completing sparse partial Latin squares cont'd

Thm. There is an $\alpha>0$, such that for every even n, if P is an $n \times n$ α-sparse PLS, then P is completable. (Value of α approx 10^{-7}.) [Chetwynd-Häggkvist, Preprint from 1985]

Completing sparse partial Latin squares cont'd

Thm. There is an $\alpha>0$, such that for every even n, if P is an $n \times n$ α-sparse PLS, then P is completable. (Value of α approx 10^{-7}.) [Chetwynd-Häggkvist, Preprint from 1985]

Extended to all n by Gustavsson (1991) in his PhD thesis.

Completing sparse partial Latin squares cont'd

Thm. There is an $\alpha>0$, such that for every even n, if P is an $n \times n$ α-sparse PLS, then P is completable. (Value of α approx 10^{-7}.) [Chetwynd-Häggkvist, Preprint from 1985]

Extended to all n by Gustavsson (1991) in his PhD thesis.

Improved value of α by Bartlett (2013) by extending techniques by Chetwynd-Häggkvist.

Completing sparse partial Latin squares cont'd

Thm. There is an $\alpha>0$, such that for every even n, if P is an $n \times n$ α-sparse PLS, then P is completable. (Value of α approx 10^{-7}.) [Chetwynd-Häggkvist, Preprint from 1985]

Extended to all n by Gustavsson (1991) in his PhD thesis.

Improved value of α by Bartlett (2013) by extending techniques by Chetwynd-Häggkvist.

Improved to $\alpha=1 / 25-\varepsilon$ by Barber-Kuhn-Lo-Osthus-Taylor (2017), provided that n is large enough.

Completing sparse partial Latin squares cont'd

Thm. There is an $\alpha>0$, such that for every even n, if P is an $n \times n$ α-sparse PLS, then P is completable. (Value of $\alpha \operatorname{approx} 10^{-7}$.) [Chetwynd-Häggkvist, Preprint from 1985]

Extended to all n by Gustavsson (1991) in his PhD thesis.

Improved value of α by Bartlett (2013) by extending techniques by Chetwynd-Häggkvist.

Improved to $\alpha=1 / 25-\varepsilon$ by Barber-Kuhn-Lo-Osthus-Taylor (2017), provided that n is large enough.

Daykin-Häggkvist (1984) conjectured that α could be as large as $1 / 4-\varepsilon$.

Completing sparse partial Latin squares cont'd

Thm. There is an $\alpha>0$, such that for every even n, if P is an $n \times n$ α-sparse PLS, then P is completable. (Value of $\alpha \operatorname{approx} 10^{-7}$.) [Chetwynd-Häggkvist, Preprint from 1985]

Extended to all n by Gustavsson (1991) in his PhD thesis.

Improved value of α by Bartlett (2013) by extending techniques by Chetwynd-Häggkvist.

Improved to $\alpha=1 / 25-\varepsilon$ by Barber-Kuhn-Lo-Osthus-Taylor (2017), provided that n is large enough.

Daykin-Häggkvist (1984) conjectured that α could be as large as $1 / 4-\varepsilon$.

Sharp by an example of Wanless (2002).

Avoiding sparse arrays

Def. An $n \times n$ array A is a $(\beta n, \beta n, \beta n)$-array if each of the symbols $1, \ldots, n$ occurs at most βn times in every row and column and every cell contains at most βn symbols.

Avoiding sparse arrays

Def. An $n \times n$ array A is a $(\beta n, \beta n, \beta n)$-array if each of the symbols $1, \ldots, n$ occurs at most βn times in every row and column and every cell contains at most βn symbols.

Conj. There is a constant $\beta>0$ such that for every positive integer n, if A is an $n \times n(\beta n, \beta n, \beta n)$-array, then A is avoidable. [Häggkvist 1989]

Avoiding sparse arrays

Def. An $n \times n$ array A is a ($\beta n, \beta n, \beta n$)-array if each of the symbols $1, \ldots, n$ occurs at most βn times in every row and column and every cell contains at most βn symbols.

Conj. There is a constant $\beta>0$ such that for every positive integer n, if A is an $n \times n(\beta n, \beta n, \beta n)$-array, then A is avoidable. [Häggkvist 1989]

Thm. Conj is true for even n. [Andrén 2010, PhD thesis]

Avoiding sparse arrays

Def. An $n \times n$ array A is a ($\beta n, \beta n, \beta n$)-array if each of the symbols $1, \ldots, n$ occurs at most βn times in every row and column and every cell contains at most βn symbols.

Conj. There is a constant $\beta>0$ such that for every positive integer n, if A is an $n \times n(\beta n, \beta n, \beta n)$-array, then A is avoidable. [Häggkvist 1989]

Thm. Conj is true for even n. [Andrén 2010, PhD thesis]
Proof (idea). Let L be the Latin square with many intercalates.

Avoiding sparse arrays

Def. An $n \times n$ array A is a ($\beta n, \beta n, \beta n$)-array if each of the symbols $1, \ldots, n$ occurs at most βn times in every row and column and every cell contains at most βn symbols.

Conj. There is a constant $\beta>0$ such that for every positive integer n, if A is an $n \times n(\beta n, \beta n, \beta n)$-array, then A is avoidable. [Häggkvist 1989]

Thm. Conj is true for even n.
[Andrén 2010, PhD thesis]
Proof (idea). Let L be the Latin square with many intercalates.
Permute the rows, columns and symbols of A, so that each row, column and symbol class in L contains "few" conflicts, i.e. cells (i, j) such that $L(i, j) \in A(i, j)$.

Avoiding sparse arrays

Def. An $n \times n$ array A is a ($\beta n, \beta n, \beta n$)-array if each of the symbols $1, \ldots, n$ occurs at most βn times in every row and column and every cell contains at most βn symbols.

Conj. There is a constant $\beta>0$ such that for every positive integer n, if A is an $n \times n(\beta n, \beta n, \beta n)$-array, then A is avoidable. [Häggkvist 1989]

Thm. Conj is true for even n.
[Andrén 2010, PhD thesis]
Proof (idea). Let L be the Latin square with many intercalates.
Permute the rows, columns and symbols of A, so that each row, column and symbol class in L contains "few" conflicts, i.e. cells (i, j) such that $L(i, j) \in A(i, j)$.
Take care of remaining "few" conflicts by swapping symbols on intercalates of L.

Avoiding sparse arrays

Def. An $n \times n$ array A is a ($\beta n, \beta n, \beta n$)-array if each of the symbols $1, \ldots, n$ occurs at most βn times in every row and column and every cell contains at most βn symbols.

Conj. There is a constant $\beta>0$ such that for every positive integer n, if A is an $n \times n(\beta n, \beta n, \beta n)$-array, then A is avoidable. [Häggkvist 1989]

Thm. Conj is true for even n.
[Andrén 2010, PhD thesis]
Proof (idea). Let L be the Latin square with many intercalates.
Permute the rows, columns and symbols of A, so that each row, column and symbol class in L contains "few" conflicts, i.e. cells (i, j) such that $L(i, j) \in A(i, j)$.
Take care of remaining "few" conflicts by swapping symbols on intercalates of L.

Thm. Conj is true for all n.
[Andrén-C.-Öhman 2013]

Avoiding sparse arrays

Def. An $n \times n$ array A is a ($\beta n, \beta n, \beta n$)-array if each of the symbols $1, \ldots, n$ occurs at most βn times in every row and column and every cell contains at most βn symbols.

Conj. There is a constant $\beta>0$ such that for every positive integer n, if A is an $n \times n(\beta n, \beta n, \beta n)$-array, then A is avoidable. [Häggkvist 1989]

Thm. Conj is true for even n.
[Andrén 2010, PhD thesis]
Proof (idea). Let L be the Latin square with many intercalates.
Permute the rows, columns and symbols of A, so that each row, column and symbol class in L contains "few" conflicts, i.e. cells (i, j) such that $L(i, j) \in A(i, j)$.
Take care of remaining "few" conflicts by swapping symbols on intercalates of L.

Thm. Conj is true for all n.
[Andrén-C.-Öhman 2013]
Similar, but more technical proof.

Avoiding sparse arrays

Def. An $n \times n$ array A is a ($\beta n, \beta n, \beta n$)-array if each of the symbols $1, \ldots, n$ occurs at most βn times in every row and column and every cell contains at most βn symbols.

Conj. There is a constant $\beta>0$ such that for every positive integer n, if A is an $n \times n(\beta n, \beta n, \beta n)$-array, then A is avoidable. [Häggkvist 1989]

Thm. Conj is true for even n.
[Andrén 2010, PhD thesis]
Proof (idea). Let L be the Latin square with many intercalates.
Permute the rows, columns and symbols of A, so that each row, column and symbol class in L contains "few" conflicts, i.e. cells (i, j) such that $L(i, j) \in A(i, j)$.
Take care of remaining "few" conflicts by swapping symbols on intercalates of L.

Thm. Conj is true for all n.
[Andrén-C.-Öhman 2013]
Similar, but more technical proof.
By, an example of Pebody, $\beta \leq 1 / 3$ in Häggkvist's conjecture.

Completing and avoiding

Ques. Is it possible to prove that there is a completion of an α-sparse PLS that simultaneously avoids a given $(\beta n, \beta n, \beta n)$-array?

Completing and avoiding

Ques. Is it possible to prove that there is a completion of an α-sparse PLS that simultaneously avoids a given ($\beta n, \beta n, \beta n$)-array?

Thm. There are constants $\alpha, \beta>0$, such that for any positive integer n, if P is an $n \times n \alpha$-sparse PLS, A is an $n \times n(\beta n, \beta n, \beta n)$-array, and $P(i, j) \notin A(i, j)$ for all i, j, then there is a completion of P that avoids A. [Andrén-C.-Markström 2019]

Completing and avoiding

Ques. Is it possible to prove that there is a completion of an α-sparse PLS that simultaneously avoids a given ($\beta n, \beta n, \beta n$)-array?

Thm. There are constants $\alpha, \beta>0$, such that for any positive integer n, if P is an $n \times n \alpha$-sparse PLS, A is an $n \times n(\beta n, \beta n, \beta n)$-array, and $P(i, j) \notin A(i, j)$ for all i, j, then there is a completion of P that avoids A. [Andrén-C.-Markström 2019]

Proof combines techniques developed by Bartlett (2013) and Andrén-C.-Öhman (2013).

Completing and avoiding

Ques. Is it possible to prove that there is a completion of an α-sparse PLS that simultaneously avoids a given ($\beta n, \beta n, \beta n$)-array?

Thm. There are constants $\alpha, \beta>0$, such that for any positive integer n, if P is an $n \times n \alpha$-sparse PLS, A is an $n \times n(\beta n, \beta n, \beta n)$-array, and $P(i, j) \notin A(i, j)$ for all i, j, then there is a completion of P that avoids A. [Andrén-C.-Markström 2019]

Proof combines techniques developed by Bartlett (2013) and Andrén-C.-Öhman (2013).

The examples by Wanless on non-completable PLS, and by Pebody on non-avoidable arrays, can be combined to prove the following.

Completing and avoiding

Ques. Is it possible to prove that there is a completion of an α-sparse PLS that simultaneously avoids a given $(\beta n, \beta n, \beta n)$-array?

Thm. There are constants $\alpha, \beta>0$, such that for any positive integer n, if P is an $n \times n \alpha$-sparse PLS, A is an $n \times n(\beta n, \beta n, \beta n)$-array, and $P(i, j) \notin A(i, j)$ for all i, j, then there is a completion of P that avoids A. [Andrén-C.-Markström 2019]

Proof combines techniques developed by Bartlett (2013) and Andrén-C.-Öhman (2013).

The examples by Wanless on non-completable PLS, and by Pebody on non-avoidable arrays, can be combined to prove the following.

Prop. If $\alpha, \beta>0$ are constants satisfying $\alpha+\beta=1 / 3+\varepsilon$, then there is an α-sparse PLS L, and a $(\beta n, \beta n, \beta n)$-array A, such that there is no completion of L that avoids A.

Latin Cubes

Def. A $n \times n \times n$ cube is a 3-dimensional array of cells having layers stacked on top of each other (so each layer corresponds to an $n \times n$ array).

Latin Cubes

Def. A $n \times n \times n$ cube is a 3 -dimensional array of cells having layers stacked on top of each other (so each layer corresponds to an $n \times n$ array).

Def. A Latin cube of order n is a $n \times n \times n$ cube where each of the symbols $1, \ldots, n$ occurs exactly once in each row, column, and file (the lines in three different directions of an $n \times n \times n$ cube).

Latin Cubes

Def. A $n \times n \times n$ cube is a 3-dimensional array of cells having layers stacked on top of each other (so each layer corresponds to an $n \times n$ array).

Def. A Latin cube of order n is a $n \times n \times n$ cube where each of the symbols $1, \ldots, n$ occurs exactly once in each row, column, and file (the lines in three different directions of an $n \times n \times n$ cube).

Example.

1	2	3
3	1	2
2	3	1

2	3	1
1	2	3
3	1	2

3	1	2
2	3	1
1	2	3

Latin Cubes

Def. A $n \times n \times n$ cube is a 3-dimensional array of cells having layers stacked on top of each other (so each layer corresponds to an $n \times n$ array).

Def. A Latin cube of order n is a $n \times n \times n$ cube where each of the symbols $1, \ldots, n$ occurs exactly once in each row, column, and file (the lines in three different directions of an $n \times n \times n$ cube).

Example.

1	2	3
3	1	2
2	3	1

2	3	1
1	2	3
3	1	2

3	1	2
2	3	1
1	2	3

Def. An $n \times n \times n$ cube is an $(\beta n, \beta n, \beta n, \beta n)$-cube if every cell contains a subset of $\{1, \ldots, n\}$ of size at most βn, and each of the symbols $1, \ldots, n$ occurs at most βn times in every row, column, and file.

Latin Cubes

Def. A $n \times n \times n$ cube is a 3-dimensional array of cells having layers stacked on top of each other (so each layer corresponds to an $n \times n$ array).

Def. A Latin cube of order n is a $n \times n \times n$ cube where each of the symbols $1, \ldots, n$ occurs exactly once in each row, column, and file (the lines in three different directions of an $n \times n \times n$ cube).

Example.

1	2	3
3	1	2
2	3	1

2	3	1
1	2	3
3	1	2

3	1	2
2	3	1
1	2	3

Def. An $n \times n \times n$ cube is an $(\beta n, \beta n, \beta n, \beta n)$-cube if every cell contains a subset of $\{1, \ldots, n\}$ of size at most βn, and each of the symbols $1, \ldots, n$ occurs at most βn times in every row, column, and file.

Def. An $n \times n \times n$ cube A is avoidable if there is a Latin cube L such that $L(i, j, k) \notin A(i, j, k)$ for all $1 \leq i, j, k \leq n$.

Avoiding sparse cubes of order 2^{t}

Avoiding sparse cubes of order 2^{t}

Thm. There is a positive constant β such that if $n=2^{t}$ and A is a ($\beta n, \beta n, \beta n, \beta n$)-cube of order 2^{t}, then A is avoidable. [C.-Markström-Pham 2019]

Avoiding sparse cubes of order 2^{t}

Thm. There is a positive constant β such that if $n=2^{t}$ and A is a ($\beta n, \beta n, \beta n, \beta n$)-cube of order 2^{t}, then A is avoidable.
[C.-Markström-Pham 2019]
Proof idea. Start from the Boolean Latin Cube L :

1	2	3	4
2	1	4	3
3	4	1	2
4	3	2	1

2	1	4	3
1	2	3	4
4	3	2	1
3	4	1	2

3	4	1	2
4	3	2	1
1	2	3	4
2	1	4	3

4	3	2	1
3	4	1	2
2	1	4	3
1	2	3	4

Avoiding sparse cubes of order 2^{t}

Thm. There is a positive constant β such that if $n=2^{t}$ and A is a $(\beta n, \beta n, \beta n, \beta n)$-cube of order 2^{t}, then A is avoidable.
[C.-Markström-Pham 2019]
Proof idea. Start from the Boolean Latin Cube L :

1	2	3	4
2	1	4	3
3	4	1	2
4	3	2	1

2	1	4	3
1	2	3	4
4	3	2	1
3	4	1	2

3	4	1	2
4	3	2	1
1	2	3	4
2	1	4	3

4	3	2	1
3	4	1	2
2	1	4	3
1	2	3	4

Permute rows, columns, files, and symbols of A, so that each row, column, file, and symbol class in L contains "few" conflicts, i.e. cells (i, j, k) such that $L(i, j, k) \in A(i, j, k)$.

Avoiding sparse cubes of order 2^{t}

Thm. There is a positive constant β such that if $n=2^{t}$ and A is a $(\beta n, \beta n, \beta n, \beta n)$-cube of order 2^{t}, then A is avoidable.
[C.-Markström-Pham 2019]
Proof idea. Start from the Boolean Latin Cube L :

1	2	3	4
2	1	4	3
3	4	1	2
4	3	2	1

2	1	4	3
1	2	3	4
4	3	2	1
3	4	1	2

3	4	1	2
4	3	2	1
1	2	3	4
2	1	4	3

4	3	2	1
3	4	1	2
2	1	4	3
1	2	3	4

Permute rows, columns, files, and symbols of A, so that each row, column, file, and symbol class in L contains "few" conflicts, i.e. cells (i, j, k) such that $L(i, j, k) \in A(i, j, k)$.
Take care of remaining "few conflicts" by swapping symbols on subcubes of order 2 ; that is, Latin cubes of order 2 contained in L.

Latin cubes of even order

Thm. There is a positive constant β such that if $n=2 t$ and A is a ($\beta n, \beta n, \beta n, \beta n$)-cube of order $2 t$, then A is avoidable. [C.-Pham 2019+]

Latin cubes of even order

Thm. There is a positive constant β such that if $n=2 t$ and A is a ($\beta n, \beta n, \beta n, \beta n$)-cube of order $2 t$, then A is avoidable. [C.-Pham 2019+]

Proof idea. Construct a Latin Cube of even order with many subcubes that we can swap symbols on.
Permute rows, columns, and files of A, so that each row, column and symbol class contains "few" conflicts, i.e. cells (i, j, k) such that $L(i, j, k) \in A(i, j, k)$.

Latin cubes of even order

Thm. There is a positive constant β such that if $n=2 t$ and A is a $(\beta n, \beta n, \beta n, \beta n)$-cube of order $2 t$, then A is avoidable. [C.-Pham 2019+]

Proof idea. Construct a Latin Cube of even order with many subcubes that we can swap symbols on.
Permute rows, columns, and files of A, so that each row, column and symbol class contains "few" conflicts, i.e. cells (i, j, k) such that $L(i, j, k) \in A(i, j, k)$.
Take care of remaining "few conlicts" by swapping symbols on subcubes of order 2.

Thank you!

