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Completing partial Latin squares

Def. An n× n partial Latin square (PLS) is an n× n array L where each
of the symbols 1, . . . , n occurs at most once in every row and column.

If no cell of L is non-empty, then it is a Latin square.

Def. A Latin square L is a completion of a PLS P if L(i, j) = P (i, j) for
every non-empty cell (i, j) of P .

Example.

P =
1 2

3
2 1

L =
1 3 2
2 1 3
3 2 1

General problem of completing partial Latin squares is NP -complete.
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Avoiding arrays

Avoiding Array Problem. Consider a n× n array A where every cell
contains a subset of the symbols in {1, . . . , n}. A(i, j) denotes the set of
symbols contained in cell (i, j) of A.

Def. A Latin square L avoids A if L(i, j) /∈ A(i, j) for every 1 ≤ i, j ≤ n.

Generalizes the problem of completing partial Latin squares.

Example.

A =
1, 2 2

2, 3 1
1, 2 1, 3

L =
3 2 1
2 1 3
1 3 2
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Completing sparse partial Latin squares

Def. An n× n PLS P is α-sparse if every row and column contains at most
αn non-empty cells and each of the symbols 1, . . . , n occurs at most αn
times in P .

Thm. There is an α > 0, such that for every even n, if P is an n× n
α-sparse PLS, then P is completable. (Value of α approx 10−7.)
[Chetwynd-Häggkvist, Preprint from 1985]

Proof idea.
Use a specific Latin square L with a lot of intercalates.

L =

1 2 3 4 5 6
3 1 2 6 4 5
2 3 1 5 6 4
4 6 5 1 3 2
5 4 6 2 1 3
6 5 4 3 2 1

Swap symbols on many intercalates in a systematic way to form a new
Latin square L′ from L that agrees with P . �
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Completing sparse partial Latin squares cont’d

Thm. There is an α > 0, such that for every even n, if P is an n× n
α-sparse PLS, then P is completable. (Value of α approx 10−7.)
[Chetwynd-Häggkvist, Preprint from 1985]

Extended to all n by Gustavsson (1991) in his PhD thesis.

Improved value of α by Bartlett (2013) by extending techniques by
Chetwynd-Häggkvist.

Improved to α = 1/25− ε by Barber-Kuhn-Lo-Osthus-Taylor (2017),
provided that n is large enough.

Daykin-Häggkvist (1984) conjectured that α could be as large as 1/4− ε.

Sharp by an example of Wanless (2002).
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Avoiding sparse arrays

Def. An n× n array A is a (βn, βn, βn)-array if each of the symbols
1, . . . , n occurs at most βn times in every row and column and every cell
contains at most βn symbols.

Conj. There is a constant β > 0 such that for every positive integer n, if A
is an n× n (βn, βn, βn)-array, then A is avoidable.
[Häggkvist 1989]

Thm. Conj is true for even n.
[Andrén 2010, PhD thesis]

Proof (idea). Let L be the Latin square with many intercalates.
Permute the rows, columns and symbols of A, so that each row, column and
symbol class in L contains ”few” conflicts, i.e. cells (i, j) such that
L(i, j) ∈ A(i, j).
Take care of remaining “few” conflicts by swapping symbols on intercalates
of L. �

Thm. Conj is true for all n.
[Andrén-C.-Öhman 2013]

Similar, but more technical proof.

By, an example of Pebody, β ≤ 1/3 in Häggkvist’s conjecture.
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Similar, but more technical proof.

By, an example of Pebody, β ≤ 1/3 in Häggkvist’s conjecture.
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[Häggkvist 1989]

Thm. Conj is true for even n.
[Andrén 2010, PhD thesis]

Proof (idea). Let L be the Latin square with many intercalates.
Permute the rows, columns and symbols of A, so that each row, column and
symbol class in L contains ”few” conflicts, i.e. cells (i, j) such that
L(i, j) ∈ A(i, j).
Take care of remaining “few” conflicts by swapping symbols on intercalates
of L. �

Thm. Conj is true for all n.
[Andrén-C.-Öhman 2013]
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Completing and avoiding

Ques. Is it possible to prove that there is a completion of an α-sparse PLS
that simultaneously avoids a given (βn, βn, βn)-array?

Thm. There are constants α, β > 0, such that for any positive integer n, if
P is an n× n α-sparse PLS, A is an n× n (βn, βn, βn)-array, and
P (i, j) /∈ A(i, j) for all i, j, then there is a completion of P that avoids A.
[Andrén-C.-Markström 2019]

Proof combines techniques developed by Bartlett (2013) and
Andrén-C.-Öhman (2013).

The examples by Wanless on non-completable PLS, and by Pebody on
non-avoidable arrays, can be combined to prove the following.

Prop. If α, β > 0 are constants satisfying α+ β = 1/3 + ε, then there is an
α-sparse PLS L, and a (βn, βn, βn)-array A, such that there is no
completion of L that avoids A.
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Andrén-C.-Öhman (2013).

The examples by Wanless on non-completable PLS, and by Pebody on
non-avoidable arrays, can be combined to prove the following.

Prop. If α, β > 0 are constants satisfying α+ β = 1/3 + ε, then there is an
α-sparse PLS L, and a (βn, βn, βn)-array A, such that there is no
completion of L that avoids A.

37 / 52



Completing and avoiding

Ques. Is it possible to prove that there is a completion of an α-sparse PLS
that simultaneously avoids a given (βn, βn, βn)-array?

Thm. There are constants α, β > 0, such that for any positive integer n, if
P is an n× n α-sparse PLS, A is an n× n (βn, βn, βn)-array, and
P (i, j) /∈ A(i, j) for all i, j, then there is a completion of P that avoids A.
[Andrén-C.-Markström 2019]

Proof combines techniques developed by Bartlett (2013) and
Andrén-C.-Öhman (2013).
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Latin Cubes

Def. A n× n× n cube is a 3-dimensional array of cells having layers
stacked on top of each other (so each layer corresponds to an n× n array).

Def. A Latin cube of order n is a n× n× n cube where each of the symbols
1, . . . , n occurs exactly once in each row, column, and file (the lines in three
different directions of an n× n× n cube).

Example.

1 2 3
3 1 2
2 3 1

2 3 1
1 2 3
3 1 2

3 1 2
2 3 1
1 2 3

Def. An n× n× n cube is an (βn, βn, βn, βn)-cube if every cell contains a
subset of {1, . . . , n} of size at most βn, and each of the symbols 1, . . . , n
occurs at most βn times in every row, column, and file.

Def. An n× n× n cube A is avoidable if there is a Latin cube L such that
L(i, j, k) /∈ A(i, j, k) for all 1 ≤ i, j, k ≤ n.
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Avoiding sparse cubes of order 2t

Thm. There is a positive constant β such that if n = 2t and A is a
(βn, βn, βn, βn)-cube of order 2t, then A is avoidable.
[C.-Markström-Pham 2019]

Proof idea. Start from the Boolean Latin Cube L:

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

2 1 4 3
1 2 3 4
4 3 2 1
3 4 1 2

3 4 1 2
4 3 2 1
1 2 3 4
2 1 4 3

4 3 2 1
3 4 1 2
2 1 4 3
1 2 3 4

Permute rows, columns, files, and symbols of A, so that each row, column,
file, and symbol class in L contains “few” conflicts, i.e. cells (i, j, k) such
that L(i, j, k) ∈ A(i, j, k).
Take care of remaining “few conflicts” by swapping symbols on subcubes of
order 2; that is, Latin cubes of order 2 contained in L. �.
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Latin cubes of even order

Thm. There is a positive constant β such that if n = 2t and A is a
(βn, βn, βn, βn)-cube of order 2t, then A is avoidable.
[C.-Pham 2019+]

Proof idea. Construct a Latin Cube of even order with many subcubes
that we can swap symbols on.
Permute rows, columns, and files of A, so that each row, column and
symbol class contains “few” conflicts, i.e. cells (i, j, k) such that
L(i, j, k) ∈ A(i, j, k).
Take care of remaining “few conlicts” by swapping symbols on subcubes of
order 2. �.
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Thank you!
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