Squares of cyclic codes

Ignacio Cascudo (Aalborg University)

13th Nordic Combinatorial Conference - NORCOM 2019 6th August 2019

Linear codes

A linear error-correcting code C of length n over a finite field \mathbb{F}_{q} is a \mathbb{F}_{q}-vector subspace of \mathbb{F}_{q}^{n}.

A linear error-correcting code C of length n over a finite field \mathbb{F}_{q} is a \mathbb{F}_{q}-vector subspace of \mathbb{F}_{q}^{n}.

- Dimension of $C(\operatorname{dim} C)$: its dimension as \mathbb{F}_{q}-vector space.
- [n, k]-code: a linear code with length n and dimension k.
- Rate of $C: k / n$.

A linear error-correcting code C of length n over a finite field \mathbb{F}_{q} is a \mathbb{F}_{q}-vector subspace of \mathbb{F}_{q}^{n}.

- Dimension of $C(\operatorname{dim} C)$: its dimension as \mathbb{F}_{q}-vector space.
- [$n, k]$-code: a linear code with length n and dimension k.
- Rate of $C: k / n$.
- Minimum distance of $C, d(C)$, is

$$
\min \left\{w_{H}(\mathbf{c}): \mathbf{c} \in C \backslash\{0\}\right\}
$$

where $w_{H}(\mathbf{c})$ denotes the Hamming weight of \mathbf{c} (number of nonzero coordinates of \mathbf{c}).

Squares of linear codes

The square (wrt the componentwise product) of a linear code C is

$$
C^{* 2}=<\{\mathbf{c} * \mathbf{d}: \mathbf{c}, \mathbf{d} \in C\}>
$$

Squares of linear codes

The square (wrt the componentwise product) of a linear code C is

$$
C^{* 2}=<\{\mathbf{c} * \mathbf{d}: \mathbf{c}, \mathbf{d} \in C\}>
$$

where:

- $<>$ denotes the linear span over the finite field
- $\mathbf{c} * \mathbf{d}$ is the component-wise product of \mathbf{c} and \mathbf{d}. If $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right), \mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, then $\mathbf{c} * \mathbf{d}=\left(c_{1} \cdot d_{1}, c_{2} \cdot d_{2}, \ldots, c_{n} \cdot d_{n}\right)$.

$$
C^{* 2}=<\{\mathbf{c} * \mathbf{d}: \mathbf{c}, \mathbf{d} \in C\}>
$$

Construct $[n, k]$-linear codes C with:

- k / n large.
- $d\left(C^{* 2}\right)$ large.

$$
C^{* 2}=<\{\mathbf{c} * \mathbf{d}: \mathbf{c}, \mathbf{d} \in C\}>
$$

Construct $[n, k]$-linear codes C with:

- k / n large.
- $d\left(C^{* 2}\right)$ large.

Note that $d(C) \geq d\left(C^{* 2}\right)$

Motivation

Secure multiparty computation

Some known results - Asymptotics

- Randriambololona 12: Over every field there exist families of linear codes $\left\{C_{n}\right\}$ with:
- Length $n \rightarrow \infty$,
- $k / n \rightarrow C>0$,
- $d\left(C^{* 2}\right) / n \rightarrow D>0$.

These are algebraic-geometric constructions.

- Randriambololona 12: Over every field there exist families of linear codes $\left\{C_{n}\right\}$ with:
- Length $n \rightarrow \infty$,
- $k / n \rightarrow C>0$,
- $d\left(C^{* 2}\right) / n \rightarrow D>0$.

These are algebraic-geometric constructions.

- C., Cramer, Mirandola, Zemor 14:

Random codes do not achieve this with large probability. No "Gilbert-Varshamov bound for squares".

Some known results - Singleton-like bound and MDS-like codes

- Randriambololona 13: Singleton-like bound.

$$
d\left(C^{* 2}\right)+2 k \leq n+2
$$

- Mirandola-Zemor 15: "Square-MDS" codes must essentially be Reed-Solomon.

However, RS require $q \geq n \ldots$ What about $q<n$?, e.g. $q=2$.

Some known results - Singleton-like bound and MDS-like codes

- Randriambololona 13: Singleton-like bound.

$$
d\left(C^{* 2}\right)+2 k \leq n+2
$$

- Mirandola-Zemor 15: "Square-MDS" codes must essentially be Reed-Solomon.

However, RS require $q \geq n \ldots$ What about $q<n$?, e.g. $q=2$.
Rest of this talk, based on results from:
Cas19: On Squares of Cyclic Codes, IEEE Transactions of Information Theory, 2019.

Cyclic codes

- Let \mathbb{F}_{q} field of q elements, n coprime to q.
- Identify vectors

$$
\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in \mathbb{F}_{q}^{n}
$$

with elements

$$
c_{0}+c_{1} X+\cdots+c_{n-1} X^{n-1} \in \mathbb{F}_{q}[X] /<X^{n}-1>
$$

- Then, a cyclic code is an ideal of $\left.\mathbb{F}_{q}[X] /<X^{n}-1\right\rangle$.
- Note that $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$ iff $\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$.

Cyclic codes - generator polynomial

- Every ideal in $\mathbb{F}_{q}[X] /<X^{n}-1>$ is generated by a polynomial g which divides $X^{n}-1$ (generator polynomial).
- Let α be an n-th primitive root of unity in $\overline{\mathbb{F}_{q}}$.

Cyclic codes - generator polynomial

- Every ideal in $\mathbb{F}_{q}[X] /<X^{n}-1>$ is generated by a polynomial g which divides $X^{n}-1$ (generator polynomial).
- Let α be an n-th primitive root of unity in $\overline{\mathbb{F}_{q}}$.
- Then g is of the form

$$
g=\frac{X^{n}-1}{\prod_{i \in I}\left(X-\alpha^{i}\right)}
$$

where $I \subseteq \mathbb{Z} / n \mathbb{Z}$ is such that

$$
x \in I \Rightarrow q \cdot x \in I
$$

i.e. I is a union of q-cyclotomic cosets (we will call it q-cyclotomic)

Dimension and minimum distance

The cyclic code C generated by

$$
g=\frac{X^{n}-1}{\prod_{i \in I}\left(X-\alpha^{i}\right)}
$$

satisfies

- $\operatorname{dim} C=|I|$.
- If $I \subseteq\{c, c+1, \ldots, c+b-1\}$ for some c and b, then $d(C) \geq n-b+1$.

Dimension and minimum distance

The cyclic code C generated by

$$
g=\frac{X^{n}-1}{\prod_{i \in I}\left(X-\alpha^{i}\right)}
$$

satisfies

- $\operatorname{dim} C=|I|$.
- If $I \subseteq\{c, c+1, \ldots, c+b-1\}$ for some c and b, then $d(C) \geq n-b+1$.

So...

- If $|I|$ is "large", then $\operatorname{dim} C$ is "large".
- If I is contained in a "small" interval, then $d(C)$ is "large".

Squares of cyclic codes - main result

If C is a cyclic code generated by

$$
g=\frac{X^{n}-1}{\prod_{i \in I}\left(X-\alpha^{i}\right)}
$$

then $C^{* 2}$ is a cyclic code generated by

$$
g=\frac{X^{n}-1}{\prod_{\ell \in I+l}\left(X-\alpha^{\ell}\right)}
$$

where $I+I=\left\{i_{1}+i_{2}: i_{1}, i_{2} \in I\right\} \subseteq \mathbb{Z} / n \mathbb{Z}$.

Squares of cyclic codes - main result

If C is a cyclic code generated by

$$
g=\frac{X^{n}-1}{\prod_{i \in I}\left(X-\alpha^{i}\right)}
$$

then $C^{* 2}$ is a cyclic code generated by

$$
g=\frac{X^{n}-1}{\prod_{\ell \in I+I}\left(X-\alpha^{\ell}\right)}
$$

where $I+I=\left\{i_{1}+i_{2}: i_{1}, i_{2} \in I\right\} \subseteq \mathbb{Z} / n \mathbb{Z}$.
Therefore:
If $I+I \subseteq\{c, c+1, \ldots, c+b-1\}$, then $d\left(C^{* 2}\right) \geq n-b+1$.

Reformulation of the problem

Therefore we want to find $I \subseteq \mathbb{Z} / n \mathbb{Z}$ such that:

- I is q-cyclotomic (necessary for defining code).
- I "large" (necessary for $\operatorname{dim} C$ large).
- $I+I$ contained in "small" interval $\{c, c+1, \ldots, c+b-1\}$ (to ensure $d\left(C^{* 2}\right)$ large).

Reformulation of the problem

Therefore we want to find $I \subseteq \mathbb{Z} / n \mathbb{Z}$ such that:

- I is q-cyclotomic (necessary for defining code).
- I "large" (necessary for $\operatorname{dim} C$ large).
- $I+I$ contained in "small" interval $\{c, c+1, \ldots, c+b-1\}$ (to ensure $d\left(C^{* 2}\right)$ large).

I will now restrict to:

- $n=q^{k}-1$. Then every q-cyclotomic coset $\left\{x, q x, q^{2} x, \ldots\right\}$ contains at most k elements (very helpful).
- $q=2$ (many results carry to other q with minor modifications).

Finding a good /

Remember we want I to be 2-cyclotomic and relatively large, but $I+I$ to be relatively small.

Idea 1: Pick largest 2-cyclotomic $I \subseteq\{0,1, \ldots, t\}$ for some t. Then $I+I \subseteq\{0, \ldots, 2 t\}$, so $d\left(C^{* 2}\right) \geq n-2 t$.

Finding a good /

Remember we want I to be 2-cyclotomic and relatively large, but $I+I$ to be relatively small.

Idea 1: Pick largest 2-cyclotomic $I \subseteq\{0,1, \ldots, t\}$ for some t.
Then $I+I \subseteq\{0, \ldots, 2 t\}$, so $d\left(C^{* 2}\right) \geq n-2 t$.

Problem:

Either

$t<2^{k-1}$, and then $I=\{0\}$, so $\operatorname{dim} C=1$.
Or
$t \geq 2^{k-1}$, and then $n-2 t<0$ and the bound for $d\left(C^{* 2}\right)$ is trivial.

Remember we want I to be 2-cyclotomic and relatively large, but $I+I$ to be relatively small.

Idea 1: Pick largest 2-cyclotomic $I \subseteq\{0,1, \ldots, t\}$ for some t.
Then $I+I \subseteq\{0, \ldots, 2 t\}$, so $d\left(C^{* 2}\right) \geq n-2 t$.

Problem:

Either

$t<2^{k-1}$, and then $I=\{0\}$, so $\operatorname{dim} C=1$.
Or
$t \geq 2^{k-1}$, and then $n-2 t<0$ and the bound for $d\left(C^{* 2}\right)$ is trivial.
Disclaimer: The bound $d\left(C^{* 2}\right) \geq n-2 t$ is not tight.

Idea 2 (indices of small Hamming weight):
Take

$$
I=\left\{i \in\{0, \ldots, n-1\}: w_{2}(i) \leq t\right\}
$$

for some t, where
$w_{2}(i)=w_{H}($ binrep $(i))$, the Hamming weight of binary representation (of length k) of i.

Idea 2 (indices of small Hamming weight):
Take

$$
I=\left\{i \in\{0, \ldots, n-1\}: w_{2}(i) \leq t\right\}
$$

for some t, where
$w_{2}(i)=w_{H}($ binrep $(i))$, the Hamming weight of binary representation (of length k) of i.

Then:

Idea 2 (indices of small Hamming weight):
Take

$$
I=\left\{i \in\{0, \ldots, n-1\}: w_{2}(i) \leq t\right\}
$$

for some t, where
$w_{2}(i)=w_{H}($ binrep $(i))$, the Hamming weight of binary representation (of length k) of i.

Then:

- Since $n=2^{k}-1$, $i \mapsto 2 i$ preserves Hamming weight, and hence $/$ is 2 -cyclotomic.

Idea 2 (indices of small Hamming weight):
Take

$$
I=\left\{i \in\{0, \ldots, n-1\}: w_{2}(i) \leq t\right\}
$$

for some t, where
$w_{2}(i)=w_{H}($ binrep $(i))$, the Hamming weight of binary representation (of length k) of i.

Then:

- Since $n=2^{k}-1, i \mapsto 2 i$ preserves Hamming weight, and hence $/$ is 2 -cyclotomic.
- One can prove $w_{2}(x+y) \leq w_{2}(x)+w_{2}(y)$. Hence

$$
I+I=\left\{i \in\{0, \ldots, n-1\}: w_{2}(i) \leq 2 t\right\}
$$

But then $I+I \subseteq(0, A)$, where
$\operatorname{binrep}(A)=(1,1,1, \ldots, 1,0,0, \ldots, 0)[2 t$ ones].

Idea 2: Take

$$
I=\left\{i \in\{1, \ldots, n-1\}: w_{2}(i) \leq t\right\}
$$

for some t.
"Problem":

- Not really a problem, but already known construction: equivalent to Reed-Muller codes.
- Somewhat limited choice of parameters.

Finding a good I

Idea 3: Based on s-restricted binary weights
Let $s \leq k$. Again take binary rep. of indices are of length k.

Finding a good /

Idea 3: Based on s-restricted binary weights
Let $s \leq k$. Again take binary rep. of indices are of length k.
The s-restricted binary weight $w_{2}^{(s)}(i)$ of $i \in\left\{0, \ldots, 2^{k}-1\right\}$ is:
$w_{2}^{(s)}(i)=\max \left\{w_{H}(v): v\right.$ subvector of s cyclically consecutive bits in $\left.\operatorname{binrep}_{k}(i)\right\}$

Restricted weights - Example

E.g. let $n=63$, so $k=6$. Let $s=3$.

Let $i=17$.
Binary representation:

$$
\operatorname{binrep}_{6}(17)=(0,1,0,0,0,1)
$$

Restricted weights - Example

E.g. let $n=63$, so $k=6$. Let $s=3$.

Let $i=17$.
Binary representation:

$$
\operatorname{binrep}_{6}(17)=(0,1,0,0,0,1)
$$

We look at all windows of 3 consecutive positions.
$(0,1,0) \rightarrow$ weight 1

Restricted weights - Example

E.g. let $n=63$, so $k=6$. Let $s=3$.

Let $i=17$.
Binary representation:

$$
\operatorname{binrep}_{6}(17)=(0,1,0,0,0,1)
$$

We look at all windows of 3 consecutive positions.
$(0,1,0) \rightarrow$ weight 1
$(1,0,0) \rightarrow$ weight 1

Restricted weights - Example

E.g. let $n=63$, so $k=6$. Let $s=3$.

Let $i=17$.
Binary representation:

$$
\operatorname{binrep}_{6}(17)=(0,1,0,0,0,1)
$$

We look at all windows of 3 consecutive positions.
$(0,1,0) \rightarrow$ weight 1
$(1,0,0) \rightarrow$ weight 1
$(0,0,0) \rightarrow$ weight 0

Restricted weights - Example

E.g. let $n=63$, so $k=6$. Let $s=3$.

Let $i=17$.
Binary representation:

$$
\operatorname{binrep}_{6}(17)=(0,1,0,0,0,1)
$$

We look at all windows of 3 consecutive positions.
$(0,1,0) \rightarrow$ weight 1
$(1,0,0) \rightarrow$ weight 1
$(0,0,0) \rightarrow$ weight 0
$(0,0,1) \rightarrow$ weight 1

Restricted weights - Example

E.g. let $n=63$, so $k=6$. Let $s=3$.

Let $i=17$.
Binary representation:

$$
\operatorname{binrep}_{6}(17)=(0,1,0,0,0,1)
$$

We look at all windows of 3 consecutive positions.
$(0,1,0) \rightarrow$ weight 1
$(1,0,0) \rightarrow$ weight 1
$(0,0,0) \rightarrow$ weight 0
$(0,0,1) \rightarrow$ weight 1
$(0,1,0) \rightarrow$ weight 1

Restricted weights - Example

E.g. let $n=63$, so $k=6$. Let $s=3$.

Let $i=17$.
Binary representation:

$$
\operatorname{binrep}_{6}(17)=(0,1,0,0,0,1)
$$

We look at all windows of 3 consecutive positions.
$(0,1,0) \rightarrow$ weight 1
$(1,0,0) \rightarrow$ weight 1
$(0,0,0) \rightarrow$ weight 0
$(0,0,1) \rightarrow$ weight 1
$(0,1,0) \rightarrow$ weight 1
$(1,0,1) \rightarrow$ weight 2

Restricted weights - Example

E.g. let $n=63$, so $k=6$. Let $s=3$.

Let $i=17$.
Binary representation:

$$
\operatorname{binrep}_{6}(17)=(0,1,0,0,0,1)
$$

We look at all windows of 3 consecutive positions.
$(0,1,0) \rightarrow$ weight 1
$(1,0,0) \rightarrow$ weight 1
$(0,0,0) \rightarrow$ weight 0
$(0,0,1) \rightarrow$ weight 1
$(0,1,0) \rightarrow$ weight 1
$(1,0,1) \rightarrow$ weight 2
Therefore $w_{2}^{(3)}(17)=2$

Construction based on s-restricted weights

Idea 3, construction: Take s, t with $s<k$, and $2 m<s$. We define

$$
I=\left\{i \in\{1, \ldots, n-1\}: w_{2}^{(s)}(i) \leq m\right\} .
$$

Construction based on s-restricted weights

Idea 3, construction: Take s, t with $s<k$, and $2 m<s$. We define

$$
I=\left\{i \in\{1, \ldots, n-1\}: w_{2}^{(s)}(i) \leq m\right\}
$$

- The s-restricted weight is also preserved under multiplication by $2 \bmod n$ because $n=2^{k}-1$. Therefore I is 2 -cyclotomic.

Construction based on s-restricted weights

Idea 3, construction: Take s, t with $s<k$, and $2 m<s$. We define

$$
I=\left\{i \in\{1, \ldots, n-1\}: w_{2}^{(s)}(i) \leq m\right\} .
$$

- The s-restricted weight is also preserved under multiplication by $2 \bmod n$ because $n=2^{k}-1$. Therefore I is 2 -cyclotomic.
- One can also prove $w_{2}^{(s)}(x+y) \leq w_{2}^{(s)}(x)+w_{2}^{(s)}(y)$ and hence

$$
I+I \subseteq\left\{i \in\{1, \ldots, n-1\}: w_{2}^{(s)}(i) \leq 2 m\right\}
$$

Construction based on s-restricted weights

Idea 3, construction: Take s, t with $s<k$, and $2 m<s$. We define

$$
I=\left\{i \in\{1, \ldots, n-1\}: w_{2}^{(s)}(i) \leq m\right\} .
$$

- The s-restricted weight is also preserved under multiplication by $2 \bmod n$ because $n=2^{k}-1$. Therefore I is 2 -cyclotomic.
- One can also prove $w_{2}^{(s)}(x+y) \leq w_{2}^{(s)}(x)+w_{2}^{(s)}(y)$ and hence

$$
I+I \subseteq\left\{i \in\{1, \ldots, n-1\}: w_{2}^{(s)}(i) \leq 2 m\right\}
$$

Because $2 m<s$, one can give a non-trivial interval containing $I+I$, hence a lower bound on $d\left(C^{* 2}\right)$. Easy to compute.

Computing the dimensions

Let s, t with $s<k$, and $2 m<s$ and

$$
I=\left\{i \in\{1, \ldots, n-1\}: w_{2}^{(s)}(i) \leq m\right\}
$$

Recall that $\operatorname{dim} C=|I|$. How large is $|I|$?

Computing the dimensions

Let s, t with $s<k$, and $2 m<s$ and

$$
I=\left\{i \in\{1, \ldots, n-1\}: w_{2}^{(s)}(i) \leq m\right\}
$$

Recall that $\operatorname{dim} C=|I|$. How large is $|I|$?
In other words, we need to:

Count all binary strings of length k, such that all substrings of s cyclically consecutive positions have at most m ones.

Computing the dimensions

Count all binary strings of length k, such that all substrings of s cyclically consecutive positions have at most m ones.

Computing the dimensions

Count all binary strings of length k, such that all substrings of s cyclically consecutive positions have at most m ones.

Equivalent to
Count all closed walks of length k in the directed graph where:

- Nodes are binary strings of length s and weight at most m.
- There is an edge from $v=\left(v_{1}, v_{2}, \ldots, v_{s}\right)$ to $w=\left(w_{1}, \ldots, w_{s}\right)$ if $v_{2}=w_{1}, v_{3}=w_{2}, \ldots, v_{s}=w_{s-1}$.

Correspondence: indices in $/$ - closed walks of length k

$k=7, s=3, m=1$

For example, take $(1,0,0,1,0,0,0) \in I$

Correspondence: indices in $/$ - closed walks of length k

$k=7, s=3, m=1$

For example, take $(1,0,0,1,0,0,0) \in I$

Correspondence: indices in $/$ - closed walks of length k

$k=7, s=3, m=1$

For example, take $(1,0,0,1,0,0,0) \in I$

Correspondence: indices in $/$ - closed walks of length k

$k=7, s=3, m=1$

For example, take $(1,0,0,1,0,0,0) \in I$

Correspondence: indices in $/$ - closed walks of length k

$k=7, s=3, m=1$

For example, take $(1,0,0,1,0,0,0) \in I$

Correspondence: indices in $/$ - closed walks of length k

$k=7, s=3, m=1$

For example, take $(1,0,0,1,0,0,0) \in I$

Correspondence: indices in $/$ - closed walks of length k

$k=7, s=3, m=1$

For example, take $(1,0,0,1,0,0,0) \in I$

Correspondence: indices in $/$ - closed walks of length k

$k=7, s=3, m=1$

For example, take $(1,0,0,1,0,0,0) \in I$

Correspondence: indices in $/$ - closed walks of length k

$k=7, s=3, m=1$

For example, take $(1,0,0,1,0,0,0) \in I$

Recursive formula for k

- The number of closed walks of length k is exactly $\operatorname{Tr}\left(A^{k}\right)$, where A is the adjacency matrix of the graph.
- Note the graph and therefore A does not depend on k.

Recursive formula for k

- The number of closed walks of length k is exactly $\operatorname{Tr}\left(A^{k}\right)$, where A is the adjacency matrix of the graph.
- Note the graph and therefore A does not depend on k.
- From Cayley-Hamilton theorem and linearity of trace:

$$
p(\operatorname{Tr}(A))=0
$$

where p is the characteristic polynomial of A.

- This can be extended, for $j \geq 0$, to

$$
\sum_{i=0}^{g} p_{i} \operatorname{Tr}\left(A^{i+j}\right)=0
$$

where $p(X)=\sum_{i=0}^{g} p_{i}(X)$.

Recursive formula for k

- Hence if we fix m and s, and increase k (therefore increasing the length $n=2^{k}-1$ of the codes), we have a recursive formula for their dimensions.

Example

For $m=1, s=3$, dimensions given by
$\operatorname{Tr}\left(A^{k}\right)=\operatorname{Tr}\left(A^{k-1}\right)+\operatorname{Tr}\left(A^{k-3}\right), \quad \operatorname{Tr}(A)=\operatorname{Tr}\left(A^{2}\right)=1, \operatorname{Tr}\left(A^{3}\right)=4$

Example

For $m=1, s=3$, dimensions given by

$$
\operatorname{Tr}\left(A^{k}\right)=\operatorname{Tr}\left(A^{k-1}\right)+\operatorname{Tr}\left(A^{k-3}\right), \quad \operatorname{Tr}(A)=\operatorname{Tr}\left(A^{2}\right)=1, \operatorname{Tr}\left(A^{3}\right)=4
$$

k	n	$\operatorname{dim} C$	$d\left(C^{* 2}\right) \geq$	Observations*
3	7	4	1	Both C and $C^{* 2}$ optimal
4	15	5	3	Both C and $C^{* 2}$ optimal
5	31	6	7	C optimal, $C^{* 2}$ not
6	63	10	9	C best known, $C^{* 2}$ not
7	127	15	19	Both C and $C^{* 2}$ best known
8	255	21	39	Both C and $C^{* 2}$ best known
9	511	31	73	

Example

For $m=1, s=3$, dimensions given by

$$
\operatorname{Tr}\left(A^{k}\right)=\operatorname{Tr}\left(A^{k-1}\right)+\operatorname{Tr}\left(A^{k-3}\right), \quad \operatorname{Tr}(A)=\operatorname{Tr}\left(A^{2}\right)=1, \operatorname{Tr}\left(A^{3}\right)=4
$$

k	n	$\operatorname{dim} C$	$d\left(C^{* 2}\right) \geq$	Observations*
3	7	4	1	Both C and $C^{* 2}$ optimal
4	15	5	3	Both C and $C^{* 2}$ optimal
5	31	6	7	C optimal, $C^{* 2}$ not
6	63	10	9	C best known, $C^{* 2}$ not
7	127	15	19	Both C and $C^{* 2}$ best known
8	255	21	39	Both C and $C^{* 2}$ best known
9	511	31	73	

* C optimal: $d(C)$ being largest possible for $(n, \operatorname{dim} C)$
* $C^{* 2}$ optimal: $d\left(C^{* 2}\right)$ being largest possible for $\left(n, \operatorname{dim} C^{* 2}\right)$

Open question: Is $d\left(C^{* 2}\right)$ optimal for $(n, \operatorname{dim} C)$?

Further work

- Ongoing work with J.S. Gundersen, D. Ruano, Squares of Matrix-product Codes (arXiv, 2019): New sets of parameters.
- Ongoing work with J.S. Gundersen, D. Ruano, Squares of Matrix-product Codes (arXiv, 2019): New sets of parameters.
- I. García-Marco, I. Má rquez-Corbella, D. Ruano, High dimensional affine codes whose square has a designed minimum distance (arXiv, 2019).
- Ongoing work with J.S. Gundersen, D. Ruano, Squares of Matrix-product Codes (arXiv, 2019): New sets of parameters.
- I. García-Marco, I. Má rquez-Corbella, D. Ruano, High dimensional affine codes whose square has a designed minimum distance (arXiv, 2019).
- Still a lot of work to do:
- Optimality of constructions
- Bounds
- Constructions of cyclic codes with length $n \neq q^{k}-1$
- Other constructions...

Tak! Takk! Tack! Kiitos!

I. Cascudo. "On Squares of Cyclic Codes". IEEE Transactions of Information Theory, 65 (2), 1034-1047, 2019.

