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Linear codes

A linear error-correcting code C of length n over a finite field Fq is
a Fq-vector subspace of Fn

q.

Dimension of C (dimC ): its dimension as Fq-vector space.

[n, k]-code: a linear code with length n and dimension k .

Rate of C : k/n.

Minimum distance of C , d(C ), is

min{wH(c) : c ∈ C \ {0}}

where wH(c) denotes the Hamming weight of c (number of
nonzero coordinates of c).
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Squares of linear codes

The square (wrt the componentwise product) of a linear code C is

C ∗2 =< {c ∗ d : c,d ∈ C} >

where:

<> denotes the linear span over the finite field

c ∗ d is the component-wise product of c and d.
If c = (c1, c2, . . . , cn), d = (d1, d2, . . . , dn), then
c ∗ d = (c1 · d1, c2 · d2, . . . , cn · dn).
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The main problem

C ∗2 =< {c ∗ d : c,d ∈ C} >

Construct [n, k]-linear codes C with:

k/n large.

d(C ∗2) large.

Note that d(C ) ≥ d(C ∗2)
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Motivation

Secure multiparty computation
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Some known results - Asymptotics

Randriambololona 12: Over every field there exist families of
linear codes {Cn} with:

Length n→∞,
k/n→ C > 0,
d(C∗2)/n→ D > 0.

These are algebraic-geometric constructions.

C., Cramer, Mirandola, Zemor 14:
Random codes do not achieve this with large probability.
No “Gilbert-Varshamov bound for squares”.
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Some known results - Singleton-like bound and MDS-like
codes

Randriambololona 13: Singleton-like bound.

d(C ∗2) + 2k ≤ n + 2

Mirandola-Zemor 15: ”Square-MDS” codes must essentially
be Reed-Solomon.

However, RS require q ≥ n... What about q < n?, e.g. q = 2.

Rest of this talk, based on results from:
Cas19: On Squares of Cyclic Codes, IEEE Transactions of
Information Theory, 2019.
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Cyclic codes

Let Fq field of q elements, n coprime to q.

Identify vectors

(c0, c1, . . . , cn−1) ∈ Fn
q

with elements

c0 + c1X + · · ·+ cn−1X
n−1 ∈ Fq[X ] / < X n − 1 > .

Then, a cyclic code is an ideal of Fq[X ] / < X n − 1 >.

Note that (c0, c1, . . . , cn−1) ∈ C iff (cn−1, c0, . . . , cn−2) ∈ C .
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Cyclic codes - generator polynomial

Every ideal in Fq[X ] / < X n − 1 > is generated by a
polynomial g which divides X n − 1 (generator polynomial).

Let α be an n-th primitive root of unity in Fq.

Then g is of the form

g =
X n − 1∏

i∈I (X − αi )

where I ⊆ Z/nZ is such that

x ∈ I ⇒ q · x ∈ I

i.e. I is a union of q-cyclotomic cosets (we will call it
q-cyclotomic)
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Dimension and minimum distance

The cyclic code C generated by

g =
X n − 1∏

i∈I (X − αi )

satisfies

dimC = |I |.
If I ⊆ {c , c + 1, . . . , c + b − 1} for some c and b, then
d(C ) ≥ n − b + 1.

So...

If |I | is “large”, then dimC is “large”.

If I is contained in a “small” interval, then d(C ) is “large”.
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Squares of cyclic codes - main result

If C is a cyclic code generated by

g =
X n − 1∏

i∈I (X − αi )

then C ∗2 is a cyclic code generated by

g =
X n − 1∏

`∈I+I (X − α`)

where I + I = {i1 + i2 : i1, i2 ∈ I} ⊆ Z/nZ.

Therefore:
If I + I ⊆ {c , c + 1, . . . , c + b − 1} , then d(C ∗2) ≥ n − b + 1.
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Reformulation of the problem

Therefore we want to find I ⊆ Z/nZ such that:

I is q-cyclotomic (necessary for defining code).

I “large” (necessary for dimC large).

I + I contained in “small” interval {c , c + 1, . . . , c + b − 1}
(to ensure d(C ∗2) large).

I will now restrict to:

n = qk − 1. Then every q-cyclotomic coset {x , qx , q2x , ...}
contains at most k elements (very helpful).

q = 2 (many results carry to other q with minor
modifications).
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Finding a good I

Remember we want I to be 2-cyclotomic and relatively large, but
I + I to be relatively small.

Idea 1: Pick largest 2-cyclotomic I ⊆ {0, 1, ..., t} for some t.
Then I + I ⊆ {0, ..., 2t}, so d(C ∗2) ≥ n − 2t.

Problem:
Either
t < 2k−1, and then I = {0}, so dimC = 1.
Or
t ≥ 2k−1, and then n − 2t < 0 and the bound for d(C ∗2) is trivial.

Disclaimer: The bound d(C ∗2) ≥ n − 2t is not tight.
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Finding a good I

Idea 2 (indices of small Hamming weight):
Take

I = {i ∈ {0, . . . , n − 1} : w2(i) ≤ t}

for some t, where
w2(i) = wH(binrep(i)), the Hamming weight of binary
representation (of length k) of i .

Then:

Since n = 2k − 1, i 7→ 2i preserves Hamming weight, and
hence I is 2-cyclotomic.

One can prove w2(x + y) ≤ w2(x) + w2(y). Hence

I + I = {i ∈ {0, . . . , n − 1} : w2(i) ≤ 2t}.

But then I + I ⊆ (0,A), where
binrep(A) = (1, 1, 1, ..., 1, 0, 0, ..., 0) [2t ones].
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Finding a good I

Idea 2: Take

I = {i ∈ {1, . . . , n − 1} : w2(i) ≤ t}

for some t.
“Problem”:

Not really a problem, but already known construction:
equivalent to Reed-Muller codes.

Somewhat limited choice of parameters.
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Finding a good I

Idea 3: Based on s-restricted binary weights

Let s ≤ k. Again take binary rep. of indices are of length k .

The s-restricted binary weight w
(s)
2 (i) of i ∈ {0, . . . , 2k − 1} is:

w
(s)
2 (i) = max{wH(v) : v subvector of s cyclically consecutive

bits in binrepk(i)}
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Restricted weights - Example

E.g. let n = 63, so k = 6. Let s = 3.
Let i = 17.
Binary representation:

binrep6(17) = (0, 1, 0, 0, 0, 1).

We look at all windows of 3 consecutive positions.
(0, 1, 0)→ weight 1
(1, 0, 0)→ weight 1
(0, 0, 0)→ weight 0
(0, 0, 1)→ weight 1
(0, 1, 0)→ weight 1
(1, 0, 1)→ weight 2

Therefore w
(3)
2 (17) = 2
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Construction based on s-restricted weights

Idea 3, construction: Take s, t with s < k, and 2m < s.
We define

I = {i ∈ {1, . . . , n − 1} : w
(s)
2 (i) ≤ m}.

The s-restricted weight is also preserved under multiplication
by 2 mod n because n = 2k − 1. Therefore I is 2-cyclotomic.

One can also prove w
(s)
2 (x + y) ≤ w

(s)
2 (x) +w

(s)
2 (y) and hence

I + I ⊆ {i ∈ {1, . . . , n − 1} : w
(s)
2 (i) ≤ 2m}.

Because 2m < s, one can give a non-trivial interval containing
I + I , hence a lower bound on d(C ∗2). Easy to compute.
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Computing the dimensions

Let s, t with s < k , and 2m < s and

I = {i ∈ {1, . . . , n − 1} : w
(s)
2 (i) ≤ m}.

Recall that dimC = |I |. How large is |I |?

In other words, we need to:

Count all binary strings of length k, such that all substrings of s
cyclically consecutive positions have at most m ones.
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Computing the dimensions

Count all binary strings of length k, such that all substrings of s
cyclically consecutive positions have at most m ones.

Equivalent to

Count all closed walks of length k in the directed graph where:

Nodes are binary strings of length s and weight at most m.

There is an edge from v = (v1, v2, . . . , vs) to
w = (w1, . . . ,ws) if v2 = w1, v3 = w2, . . . , vs = ws−1.

19/25



Computing the dimensions

Count all binary strings of length k, such that all substrings of s
cyclically consecutive positions have at most m ones.

Equivalent to

Count all closed walks of length k in the directed graph where:

Nodes are binary strings of length s and weight at most m.

There is an edge from v = (v1, v2, . . . , vs) to
w = (w1, . . . ,ws) if v2 = w1, v3 = w2, . . . , vs = ws−1.

19/25



Correspondence: indices in I - closed walks of length k

k = 7, s = 3, m = 1

000 001

010100

For example, take (1,0,0,1,0,0,0)∈ I
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Recursive formula for k

The number of closed walks of length k is exactly Tr(Ak),
where A is the adjacency matrix of the graph.

Note the graph and therefore A does not depend on k .

From Cayley-Hamilton theorem and linearity of trace:

p(Tr(A)) = 0

where p is the characteristic polynomial of A.

This can be extended, for j ≥ 0, to

g∑
i=0

piTr(Ai+j) = 0

where p(X ) =
∑g

i=0 pi (X ).
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Recursive formula for k

Hence if we fix m and s, and increase k (therefore increasing
the length n = 2k − 1 of the codes), we have a recursive
formula for their dimensions.
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Example

For m = 1, s = 3, dimensions given by

Tr(Ak) = Tr(Ak−1)+Tr(Ak−3), Tr(A) = Tr(A2) = 1,Tr(A3) = 4

k n dimC d(C ∗2) ≥ Observations*

3 7 4 1 Both C and C ∗2 optimal
4 15 5 3 Both C and C ∗2 optimal
5 31 6 7 C optimal, C ∗2 not
6 63 10 9 C best known, C ∗2 not
7 127 15 19 Both C and C ∗2 best known
8 255 21 39 Both C and C ∗2 best known
9 511 31 73

* C optimal: d(C ) being largest possible for (n, dimC )
* C ∗2 optimal: d(C ∗2) being largest possible for (n, dimC ∗2)
Open question: Is d(C ∗2) optimal for (n, dimC )?
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Further work

Ongoing work with J.S. Gundersen, D. Ruano, Squares of
Matrix-product Codes (arXiv, 2019): New sets of parameters.

I. Garćıa-Marco, I. Má rquez-Corbella, D. Ruano,High
dimensional affine codes whose square has a designed
minimum distance (arXiv, 2019).

Still a lot of work to do:

Optimality of constructions
Bounds
Constructions of cyclic codes with length n 6= qk − 1
Other constructions...

24/25



Further work

Ongoing work with J.S. Gundersen, D. Ruano, Squares of
Matrix-product Codes (arXiv, 2019): New sets of parameters.
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Thank you!

Tak! Takk! Tack! Kiitos!

I. Cascudo. “On Squares of Cyclic Codes”. IEEE Transactions of
Information Theory, 65 (2), 1034-1047, 2019.
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