Parity Theorems about Cycles and Trees

Kathie Cameron

Wilfrid Laurier University
Waterloo, Canada

A Hamiltonian cycle in a graph G is a cycle containing each vertex of G

Smith's Theorem (Tutte 1946)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is 3 . Let e be an edge of G .
Then the number of Hamiltonian cycles containing edge e is even.

A Hamiltonian cycle in a graph G is a cycle containing each vertex of G

Smith's Theorem (Tutte 1946)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is 3 . Let e be an edge of G .
Then the number of Hamiltonian cycles containing edge e is even.

A Hamiltonian cycle in a graph G is a cycle containing each vertex of G

Smith's Theorem (Tutte 1946)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is 3 .
Let e be an edge of G.
Then the number of Hamiltonian cycles containing edge e is even.
Note that the total number of Hamiltonian cycles may not be even. Eg. K 4

Smith's Theorem-(Tutte 1946)-Theorem (Andrew Thomason 1978)

Let G be a graph where the degree, $d(v)$, of every vertex v is β odd. Let e be an edge of G.
Then the number of Hamiltonian cycles containing edge e is even.

Exchange Graphs

The idea:

For any graph, the number of vertices of odd degree is even.

To prove that the number of desired structures is even, construct a graph \mathbf{X} such that
desired structures \leftrightarrow odd-degree vertices of \mathbf{X}

Then, given one desired structure, to find another desired structure, walk in the exchange graph \mathbf{X} from the given odd-degree vertex to another odd-degree vertex

Theorem (Andrew Thomason 1978)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd. Let e be an edge of G.
Then the number of Hamiltonian cycles containing edge e is even.
Proof.

Hamiltonian path starting with e

Theorem (Andrew Thomason)

Let G be a graph where the degree, $d(v)$, of every vertex v is odd. Let e be an edge of G.
Then the number of Hamiltonian cycles containing edge e is even.
Proof.

Hamiltonian path starting with e

Theorem (Andrew Thomason)

Let G be a graph where the degree, $d(v)$, of every vertex v is odd. Let e be an edge of G.
Then the number of Hamiltonian cycles containing edge e is even.

Hamiltonian path starting with e
Another Hamiltonian path starting with e

Theorem (Andrew Thomason)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd. Let e be an edge of G.
Then the number of Hamiltonian cycles containing edge e is even.

Hamiltonian path starting with e

Another Hamiltonian path starting with e

Theorem (Andrew Thomason)

Let G be a graph where the degree, $d(v)$, of every vertex v is odd. Let e be an edge of G.
Then the number of Hamiltonian cycles containing edge e is even.

Hamiltonian path starting with e

Another Hamiltonian path starting with e

Create the exchange graph $\mathbf{X}(\mathbf{G})$:
Vertices are: Hamiltonian paths starting with e Join two vertices of $\mathrm{X}(\mathrm{G})$ if the Hamiltonian paths they correspond to are related by an exchange as above

$$
y<
$$

$$
\sum \Delta
$$

Theorem (Andrew Thomason)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G .
Then the number of Hamiltonian cycles containing edge e is even.

Hamiltonian path starting with e

Another Hamiltonian path starting with e

Create the exchange graph $\mathrm{X}(\mathrm{G})$:
Vertices are: Hamiltonian paths starting with e
Join two vertices of $\mathrm{X}(\mathrm{G})$ if the Hamiltonian paths they correspond to are related by an exchange as above
Degrees in $\mathrm{X}(\mathrm{G})$:
Let P be a vertex of $X(G)$, i.e., a Hamiltonian path starting with e and ending at z degree $_{\mathrm{X}(\mathrm{G})}(\mathrm{P})=$ if P is not extendible to a Hamiltonian cycle if P is extendible to a Hamiltonian cycle

Theorem (Andrew Thomason)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G .
Then the number of Hamiltonian cycles containing edge e is even.

Hamiltonian path starting with e

Another Hamiltonian path starting with e

Create the exchange graph $\mathrm{X}(\mathrm{G})$:
Vertices are: Hamiltonian paths starting with e
Join two vertices of $\mathrm{X}(\mathrm{G})$ if the Hamiltonian paths they correspond to are related by an exchange as above
Degrees in $\mathrm{X}(\mathrm{G})$:
Let P be a vertex of $X(G)$, i.e., a Hamiltonian path starting with e and ending at z $\operatorname{degree}_{\mathrm{X}_{(\mathrm{G})}}(\mathrm{P})=\mathbf{d}(\mathbf{z})-1 \quad$ if P is not extendible to a Hamiltonian cycle if P is extendible to a Hamiltonian cycle

Theorem (Andrew Thomason)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G .
Then the number of Hamiltonian cycles containing edge e is even.

Hamiltonian path starting with e

Another Hamiltonian path starting with e

Create the exchange graph $\mathrm{X}(\mathrm{G})$:
Vertices are: Hamiltonian paths starting with e
Join two vertices of $\mathrm{X}(\mathrm{G})$ if the Hamiltonian paths they correspond to are related by an exchange as above
Degrees in $\mathrm{X}(\mathrm{G})$:
Let P be a vertex of $X(G)$, i.e., a Hamiltonian path starting with e and ending at v degree $_{\mathrm{X}_{(\mathrm{G})}}(\mathrm{P})=\mathrm{d}(\mathrm{z})-1$ if P is not extendible to a Hamiltonian cycle if P is extendible to a Hamiltonian cycle

Theorem (Andrew Thomason)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G.
Then the number of Hamiltonian cycles containing edge e is even.

Hamiltonian path starting with e

Another Hamiltonian path starting with e

Create the exchange graph $\mathrm{X}(\mathrm{G})$:
Vertices are: Hamiltonian paths starting with e
Join two vertices of $\mathrm{X}(\mathrm{G})$ if the Hamiltonian paths they correspond to are related by an exchange as above
Degrees in $\mathrm{X}(\mathrm{G})$:
Let P be a vertex of $X(G)$, i.e., a Hamiltonian path starting with e and ending at v degree $_{\mathrm{X}(\mathrm{G})}(\mathrm{P})=\mathrm{d}(\mathrm{z})-1$ if P is not extendible to a Hamiltonian cycle
$d(z)-2$ if P is extendible to a Hamiltonian cycle

Theorem (Andrew Thomason)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G .
Then the number of Hamiltonian cycles containing edge e is even.

Hamiltonian path starting with e

Another Hamiltonian path starting with e

Create the exchange graph $\mathrm{X}(\mathrm{G})$:
Vertices are: Hamiltonian paths starting with e
Join two vertices of $\mathrm{X}(\mathrm{G})$ if the Hamiltonian paths they correspond to are related by an exchange as above
Degrees in $\mathrm{X}(\mathrm{G})$:
Let P be a vertex of $X(G)$, i.e., a Hamiltonian path starting with e and ending at v $\operatorname{degree}_{\mathrm{X}(\mathrm{G})}(\mathrm{P})=\mathbf{d}(\mathbf{z})-1$ if P is not extendible to a Hamiltonian cycle even $\mathbf{d}(\mathbf{z})-\mathbf{2}$ if P is extendible to a Hamiltonian cycle

Theorem (Andrew Thomason)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G .
Then the number of Hamiltonian cycles containing edge e is even.

Hamiltonian path starting with e

Another Hamiltonian path starting with e

Create the exchange graph $\mathrm{X}(\mathrm{G})$:
Vertices are: Hamiltonian paths starting with e
Join two vertices of $\mathrm{X}(\mathrm{G})$ if the Hamiltonian paths they correspond to are related by an exchange as above
Degrees in $\mathrm{X}(\mathrm{G})$:
Let P be a vertex of $X(G)$, i.e., a Hamiltonian path starting with e and ending at v $\operatorname{degree}_{\mathrm{X}(\mathrm{G})}(\mathrm{P})=\mathbf{d}(\mathbf{z})-1$ if P is not extendible to a Hamiltonian cycle even $\mathbf{d}(\mathbf{z})-2$ if P is extendible to a Hamiltonian cycle odd

Theorem (Andrew Thomason)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G.
Then the number of Hamiltonian cycles containing edge e is even.

Hamiltonian path starting with e

Another Hamiltonian path starting with e

Create the exchange graph $\mathrm{X}(\mathrm{G})$:
Vertices are: Hamiltonian paths starting with e
Join two vertices of $\mathrm{X}(\mathrm{G})$ if the Hamiltonian paths they correspond to are related by an exchange as above
Degrees in $\mathrm{X}(\mathrm{G})$:
Let P be a vertex of $X(G)$, i.e., a Hamiltonian path starting with e and ending at v $\operatorname{degree}_{\mathrm{X}(\mathrm{G})}(\mathrm{P})=\mathbf{d}(\mathbf{z})-\mathbf{1}$ if P is not extendible to a Hamiltonian cycle even $\mathbf{d}(\mathbf{z})-2$ if P is extendible to a Hamiltonian cycle odd
In any graph, the number of vertices of odd degree is even.
Thus, the number of Hamiltonian cycles containing e is even.

Theorem (Shunichi Toida, 1973)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is even. Let e be an edge of G.
Then the number of cycles containing edge e is odd.

Theorem (Shunichi Toida, 1973)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is even.
Let e be an edge of G .
Then the number of cycles containing edge e is odd.

Theorem (Andrew Thomason, 1978)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd. Let e be an edge of G.
Then the number of Hamiltonian cycles containing edge e is even.

Theorem (Shunichi Toida, 1973)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is even.
Let e be an edge of G .
Then the number of cycles containing edge e is odd.

Theorem (Andrew Thomason, 1978)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd. Let e be an edge of G.
Then the number of Hamiltonian cycles containing edge e is even.

Theorem (Shunichi Toida, 1973)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is even.
Let e be an edge of G .
Then the number of cycles containing edge e is odd.
Since no vertex has odd degree, we could replace "cycles" by "cycles containing all the odd-degree vertices"

Theorem (Andrew Thomason, 1978)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G.
Then the number of Hamiltonian cycles containing edge e is even.

Theorem (Shunichi Toida, 1973)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is even.
Let e be an edge of G .
Then the number of cycles containing edge e is odd.
Since no vertex has odd degree, we could replace "cycles" by "cycles containing all the odd-degree vertices"

Theorem (Andrew Thomason, 1978)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G .
Then the number of Hamiltonian cycles containing edge e is even.

Since every vertex has odd degree, we could replace "Hamiltonian cycles" by "cycles containing all the odd-degree vertices"

Theorem (Shunichi Toida, 1973)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is even.
Let e be an edge of G .
Then the number of cycles containing edge e and all the odd-degree vertices is odd.

Theorem (Andrew Thomason, 1978)
Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G .
Then the number of cycles containing edge e and all the odd-degree vertices is even.

Theorem (Shunichi Toida, 1973)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is even.
Let e be an edge of G .
Then the number of cycles containing edge e and all the odd-degree vertices is odd.

Theorem (Andrew Thomason, 1978)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G .
Then the number of cycles containing edge e and all the odd-degree vertices is even.

Theorem (Shunichi Toida, 1973)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is even.
Let e be an edge of G .
Then the number of cycles containing edge e and all the odd-degree vertices is odd.

Theorem (Andrew Thomason, 1978)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G .
Then the number of cycles containing edge e and all the odd-degree vertices is even.

All vertices have even degree

All vertices have odd degree
\#cycles containing e and all odd-degree vertices

Theorem (Shunichi Toida, 1973)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is even.
Let e be an edge of G .
Then the number of cycles containing edge e and all the odd-degree vertices is odd.

Theorem (Andrew Thomason, 1978)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd.
Let e be an edge of G .
Then the number of cycles containing edge e and all the odd-degree vertices is even.

All vertices have even degree	There is an odd-degree vertex	\ldots	All vertices have odd degree
odd	even	\ldots	even

\#cycles containing e and all odd-degree vertices

Carsten Thomassen and I proved that the number of cycles containing e and all the odd-degree vertices is even as soon as the graph has an odd-degree vertex.

A graph is called Eulerian if every vertex has even degree.

Theorem (Carsten Thomassen and KC, 2018+)

Let G be a graph and let e be an edge of G .
The number of cycles containing edge e and all the odd-degree vertices is odd
if and only if
G is Eulerian.

A graph is called Eulerian if every vertex has even degree.

Theorem (Carsten Thomassen and KC, 2018+)

Let G be a graph and let e be an edge of G .
The number of cycles containing edge e and all the odd-degree vertices is odd
if and only if
G is Eulerian.
Our proof uses "liftings" of even-degree vertices and is not algorithmic. I will give an exchange graph proof.

Some background:

Theorem (Andrew Thomason 1978)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd. Let e be an edge of G . Then the number of Hamiltonian cycles containing edge e is even.

Corollary

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd. Let e be an edge of G .
If there is one Hamiltonian cycle containing e, then there is another.

Theorem (Carsten Thomassen, 2016, published 2018)

Let G be a graph where no two even-degree vertices are adjacent.
If there is one cycle containing all the odd-degree vertices, then there is another.
Thomassen used four types of exchange operations, one of which was Andrew Thomassen's "lollipop" exchange.

Theorem (KC, 2017+)

Let G be a graph where no two even-degree vertices are adjacent. Let e be an edge of G .
Then the number of cycles containing e and all the odd-degree vertices is even.
Follows from
Theorem (KC, 2017+)
Let G be a bipartite graph with bipartition (A,B), where every vertex in A has odd degree and every vertex in B has even degree. Let e be an edge of G.
Then the number of cycles containing e and all the odd-degree vertices is even.

Some background:

Theorem (Andrew Thomason 1978)

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd. Let e be an edge of G . Then the number of Hamiltonian cycles containing edge e is even.

Corollary

Let G be a graph where the degree, $\mathrm{d}(\mathrm{v})$, of every vertex v is odd. Let e be an edge of G .
If there is one Hamiltonian cycle containing e, then there is another.

Theorem (Carsten Thomassen, 2016, published 2018)

Let G be a graph where no two even-degree vertices are adjacent.
If there is one cycle containing all the odd-degree vertices, then there is another.
Thomassen used four types of exchange operations, one of which was Andrew Thomassen's "lollipop" exchange.

Theorem (KC, 2017+)

Let G be a graph where no two even-degree vertices are adjacent.
Let e be an edge of G .
Then the number of cycles containing e and all the odd-degree vertices is even.
But it turned out that by generalizing the exchange operations into two types, one can get an exchange graph proof of a more general result.

Theorem (Carsten Thomassen and KC, 2018+)

Let G be a graph with an odd-degree vertex and let e be an edge of G . The number of cycles containing edge e and all the odd-degree vertices is even.

This, combined with Toida's Theorem gives:

Theorem (Carsten Thomassen and KC, 2018+)

Let G be a graph and let e be an edge of G .
The number of cycles containing edge e and all the odd-degree vertices
is odd
if and only if
G is Eulerian.
Jack Edmonds and I (1999) gave an exchange graph proof of Toida's Theorem.

A Hamiltonian cycle containing edge e in G
corresponds to a Hamiltonian path in $\mathrm{G}-\mathrm{e}$ which is a spanning tree with degree with degree 1 at the ends of e and 2 elsewhere

Defn. Given a graph G and a subgraph S of G (for us, a tree), the excess degree of a vertex is its degree in $G-E(S)$.

Theorem (Ken Berman, 1986)
Suppose graph G has a spanning tree T where the excess degree of each vertex is odd. Then the number of spanning trees of G with the same degree at each vertex as T is even.

Defn. Given a graph G and a subgraph S of G (for us, a tree), the excess degree of a vertex is its degree in $G-E(S)$.

Theorem (Ken Berman, 1986)
Suppose graph G has a spanning tree T where the excess degree of each vertex is odd. Then the number of spanning trees of G with the same degree at each vertex as \boldsymbol{T} is even.

Jack Edmonds and I gave an exchange graph proof (1999) of a generalization - only vertices which are not leaves need to have excess degree

Theorem

Suppose graph G has a spanning tree T where the excess degree of each vertex which is not a leaf of T is odd. Then the number of spanning trees of G with the same degree at each vertex as T is even.

Let \mathbf{B} be a set of even-degree vertices in a graph G
Let $\mathbf{A}=\mathbf{V}(\mathbf{G})-\mathbf{B}$
A tree T^{*} is called good if it contains all of A
and has degree 0 or 2 at each vertex of \mathbf{B}

Let \mathbf{B} be a set of even-degree vertices in a graph G
Let $\mathbf{A}=\mathbf{V}(\mathbf{G})-\mathbf{B}$
A tree T^{*} is called good if it contains all of A
and has degree 0 or 2 at each vertex of \mathbf{B}

Let \mathbf{B} be a set of even-degree vertices in a graph $\mathbf{G} . \mathbf{A}=\mathbf{V}(\mathbf{G})-\mathbf{B}$. A tree T^{*} is called good if it contains all of A and has degree 0 or 2 at each vertex of \mathbf{B} A good tree T is called T^{*} - similar if it has the same degree at each vertex of \mathbf{A} as T*.

Let \mathbf{B} be a set of even-degree vertices in a graph $\mathbf{G} . \mathbf{A}=\mathbf{V}(\mathbf{G})-\mathbf{B}$. A tree T^{*} is called good if it contains all of A and has degree 0 or 2 at each vertex of \mathbf{B} A good tree T is called T^{*} - similar if it has the same degree at each vertex of \mathbf{A} as T*.
Consider a good tree \mathbf{T}^{*} such that every vertex of \mathbf{A} which is not a leaf

of T^{*} has odd excess degree

Let \mathbf{B} be a set of even-degree vertices in a graph $\mathbf{G} . \mathbf{A}=\mathbf{V}(\mathbf{G})-\mathbf{B}$. A tree T^{*} is called good if it contains all of A and has degree 0 or 2 at each vertex of \mathbf{B}

Consider a good tree T^{*} such that every vertex of \mathbf{A} which is not a leaf

Let \mathbf{B} be a set of even-degree vertices in a graph $\mathbf{G} . \mathbf{A}=\mathbf{V}(\mathbf{G})-\mathbf{B}$. A tree T^{*} is called good if it contains all of A and has degree 0 or 2 at each vertex of \mathbf{B} A good tree T is called T^{*} - similar if it has the same degree at each vertex of \mathbf{A} as T^{*}.

Theorem (KC 2018+)
Let G be a graph and B a set of even-degree vertices in G.
Let $\mathbf{A}=\mathbf{V}(\mathbf{G})-\mathbf{B}$.
Let T^{*} be a good tree such that each vertex of T^{*} which is not a leaf has odd excess degree.
Then the number of T^{*}-similar trees is even.

Jack Edmonds and I (2017+) had proved this when G is a bipartite graph with biparition (A, B).

Theorem (KC 2018+)

Let G be a graph and B a set of even-degree vertices in G.
Let $\mathbf{A}=\mathbf{V}(\mathbf{G})-\mathbf{B}$.
Let T^{*} be a good tree such that each vertex of T^{*} which is not a leaf has odd excess degree. Then the number of T^{*}-similar trees is even.

Theorem (Carsten Thomassen and KC, 2018+)
Let G be a graph with an odd-degree vertex and let e be an edge of G . The number of cycles containing edge e and all the odd-degree vertices is even.

Theorem (KC 2018+)

Let G be a graph and B a set of even-degree vertices in G.
Let $\mathbf{A}=\mathbf{V}(\mathbf{G})-\mathbf{B}$.
Let T^{*} be a good tree such that each vertex of T^{*} which is not a leaf has odd excess degree. Then the number of T^{*}-similar trees is even.

Theorem (Carsten Thomassen and KC, 2018+)

Let G be a graph with an odd-degree vertex and let e be an edge of G .
The number of cycles containing edge e and all the odd-degree vertices is even.

Proof of the cycle theorem from the tree theorem.

Let C be a cycle containing edge $\mathrm{e}=\mathrm{xy}$ and all the odd-degree vertices.
Let \mathbf{B} be the set of even-degree vertices in G, other than x and y (which may have odd or even degree). $\mathbf{A}=\mathbf{V}(\mathbf{G})-\mathbf{B}$.
Then $T^{*}=C-e$ is a tree in a graph G-e.
For each vertex of \mathbf{A} in T^{*} other than possibly leaves x and y , its excess degree in G-e is (an odd number - 2), thus odd.
By the tree theorem, the number of T^{*}-similar trees is even.
There is a 1-1 correspondence between these and cycles in G containing e and all the odd-degree vertices.

Theorem (Shunichi Toida, 1973)

Let G be a graph where the degree, $d(v)$, of every vertex v is even (i.e. G is Eulerian). Let $\mathrm{e}=\mathrm{st}$ be an edge of G .
Then the number of cycles containing edge e is odd.
Exchange Graph Proof (Jack Edmonds and KC, 1999)
The odd-degree vertices of the exchange graph $\mathrm{X}(\mathrm{G})$ are:

edge e

The even-degree vertices of the exchange graph $\mathrm{X}(\mathrm{G})$ are:

paths beginning with st, of length > 1
The exchange operations are adding or removing an edge meeting the last vertex of the path or an Andrew Thomason exchange:

Path starting with e

Another path starting with e

The odd-degree vertices of the exchange graph $\mathrm{X}(\mathrm{G})$ are:

edge e

cycles containing e
degree is $\mathrm{d}(\mathrm{t})-1$
which is odd
The even-degree vertices of the exchange graph $\mathrm{X}(\mathrm{G})$ are:

paths beginning with st, of length > 1

The exchange operations are adding or removing an edge meeting the last vertex of the path or an Andrew Thomason exchange:

Path starting with e

The odd-degree vertices of the exchange graph $\mathrm{X}(\mathrm{G})$ are:

degree is $\mathrm{d}(\mathrm{t})-1$ which is odd

cycles containing e
degree is 1
which is odd

The even-degree vertices of the exchange graph $\mathrm{X}(\mathrm{G})$ are:

paths beginning with st, of length > 1

The exchange operations are adding or removing an edge meeting the last vertex of the path or an Andrew Thomason exchange:

Path starting with e

The odd-degree vertices of the exchange graph $\mathrm{X}(\mathrm{G})$ are:

The even-degree vertices of the exchange graph $\mathrm{X}(\mathrm{G})$ are paths beginning with st, of length > 1

degree is $d(z)$ which is even
The exchange operations are adding or removing an edge meeting the last vertex of the path or an Andrew Thomason exchange:

Path starting with e

