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A Hamiltonian cycle in a graph G is a cycle containing each vertex of G  
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Smith’s Theorem (Tutte 1946) 

Let G be a graph where the degree, d(v), of every vertex v is 3. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

 

 

 

 



A Hamiltonian cycle in a graph G is a cycle containing each vertex of G  
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Smith’s Theorem (Tutte 1946) 

Let G be a graph where the degree, d(v), of every vertex v is 3. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

 

 

 

 

 



A Hamiltonian cycle in a graph G is a cycle containing each vertex of G  
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Smith’s Theorem (Tutte 1946) 

Let G be a graph where the degree, d(v), of every vertex v is 3. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Note that the total number of Hamiltonian cycles may not be even. Eg. K4 

 

 

 



Smith’s Theorem (Tutte 1946) Theorem (Andrew Thomason 1978) 

Let G be a graph where the degree, d(v), of every vertex v is 3 odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Exchange Graphs 

 

The idea:  

For any graph, the number of vertices of odd degree is even. 

 

To prove that the number of desired structures is even, 

construct a graph  X  such that 

desired structures ↔ odd-degree vertices of  X 

 

Then, given one desired structure, to find another desired structure, 

walk in the exchange graph  X  from the given odd-degree vertex to 

another odd-degree vertex 

 

 

 

 

 



Theorem (Andrew Thomason 1978) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Proof.  

s     e  
     Hamiltonian path starting with e 

 

 

 

 

 

 

 

 

 

 



Theorem (Andrew Thomason) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Proof.  

s     e  
     Hamiltonian path starting with e 

 

 

 

 

 

 

 

 

 

 



Theorem (Andrew Thomason) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Proof.  

s     e  
     Hamiltonian path starting with e   Another Hamiltonian path starting with e 

 

 

 

 

 

 

 

 

 

 



Theorem (Andrew Thomason) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Proof.   

s     e  
     Hamiltonian path starting with e   Another Hamiltonian path starting with e 

 

 

 

 

 

 

 

 

 

 



Theorem (Andrew Thomason) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Proof.   

s     e  
     Hamiltonian path starting with e   Another Hamiltonian path starting with e 

 

Create the exchange graph X(G): 

 Vertices are: Hamiltonian paths starting with e 

Join two vertices of X(G) if the Hamiltonian paths they correspond to are 

related by an exchange as above 
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Theorem (Andrew Thomason) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Proof.   

s     e                                    z  
     Hamiltonian path starting with e   Another Hamiltonian path starting with e 

 

Create the exchange graph X(G): 

 Vertices are: Hamiltonian paths starting with e 

Join two vertices of X(G) if the Hamiltonian paths they correspond to are 

related by an exchange as above 

Degrees in X(G): 

Let P be a vertex of X(G), i.e., a Hamiltonian path starting with e and ending at z 

 degreeX(G)(P) =           if P is not extendible to a Hamiltonian cycle 

                   if P is extendible to a Hamiltonian cycle  

 

 

 



Theorem (Andrew Thomason) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Proof.   

s     e                                    z  
     Hamiltonian path starting with e   Another Hamiltonian path starting with e 

 

Create the exchange graph X(G): 

 Vertices are: Hamiltonian paths starting with e 

Join two vertices of X(G) if the Hamiltonian paths they correspond to are 

related by an exchange as above 

Degrees in X(G): 

Let P be a vertex of X(G), i.e., a Hamiltonian path starting with e and ending at z 

 degreeX(G)(P) = d(z) - 1  if P is not extendible to a Hamiltonian cycle 

                   if P is extendible to a Hamiltonian cycle  

 

 

 



Theorem (Andrew Thomason) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Proof.   

s     e                                    z  
     Hamiltonian path starting with e   Another Hamiltonian path starting with e 

 

Create the exchange graph X(G): 

 Vertices are: Hamiltonian paths starting with e 

Join two vertices of X(G) if the Hamiltonian paths they correspond to are 

related by an exchange as above 

Degrees in X(G): 

Let P be a vertex of X(G), i.e., a Hamiltonian path starting with e and ending at v 

 degreeX(G)(P) = d(z) - 1  if P is not extendible to a Hamiltonian cycle 

                         if P is extendible to a Hamiltonian cycle  

 

 

 



Theorem (Andrew Thomason) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Proof.   

s     e                               z  
     Hamiltonian path starting with e   Another Hamiltonian path starting with e 

 

Create the exchange graph X(G): 

 Vertices are: Hamiltonian paths starting with e 

Join two vertices of X(G) if the Hamiltonian paths they correspond to are 

related by an exchange as above 

Degrees in X(G): 

Let P be a vertex of X(G), i.e., a Hamiltonian path starting with e and ending at v 

 degreeX(G)(P) = d(z) - 1  if P is not extendible to a Hamiltonian cycle 

          d(z) - 2  if P is extendible to a Hamiltonian cycle  

 

 

 



Theorem (Andrew Thomason) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Proof.   

s     e                                    z  
     Hamiltonian path starting with e   Another Hamiltonian path starting with e 

 

Create the exchange graph X(G): 

 Vertices are: Hamiltonian paths starting with e 

Join two vertices of X(G) if the Hamiltonian paths they correspond to are 

related by an exchange as above 

Degrees in X(G): 

Let P be a vertex of X(G), i.e., a Hamiltonian path starting with e and ending at v 

 degreeX(G)(P) = d(z) - 1  if P is not extendible to a Hamiltonian cycle   even 

          d(z) - 2  if P is extendible to a Hamiltonian cycle  

 

 

 



Theorem (Andrew Thomason) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Proof.   

s     e                                    z  
     Hamiltonian path starting with e   Another Hamiltonian path starting with e 

 

Create the exchange graph X(G): 

 Vertices are: Hamiltonian paths starting with e 

Join two vertices of X(G) if the Hamiltonian paths they correspond to are 

related by an exchange as above 

Degrees in X(G): 

Let P be a vertex of X(G), i.e., a Hamiltonian path starting with e and ending at v 

 degreeX(G)(P) = d(z) - 1  if P is not extendible to a Hamiltonian cycle   even 

          d(z) - 2  if P is extendible to a Hamiltonian cycle         odd 

  

 

 



Theorem (Andrew Thomason) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Proof.   

s     e                                    z  
     Hamiltonian path starting with e   Another Hamiltonian path starting with e 

 

Create the exchange graph X(G): 

 Vertices are: Hamiltonian paths starting with e 

Join two vertices of X(G) if the Hamiltonian paths they correspond to are 

related by an exchange as above 

Degrees in X(G): 

Let P be a vertex of X(G), i.e., a Hamiltonian path starting with e and ending at v 

 degreeX(G)(P) = d(z) - 1  if P is not extendible to a Hamiltonian cycle  even 

          d(z) - 2  if P is extendible to a Hamiltonian cycle    odd 

In any graph, the number of vertices of odd degree is even. 

Thus, the number of Hamiltonian cycles containing e is even.  □ 

  



Theorem (Shunichi Toida, 1973) 

Let G be a graph where the degree, d(v), of every vertex v is even. 

Let e be an edge of G. 

Then the number of cycles containing edge e is odd. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Theorem (Shunichi Toida, 1973) 

Let G be a graph where the degree, d(v), of every vertex v is even. 

Let e be an edge of G. 

Then the number of cycles containing edge e is odd. 

 

Theorem (Andrew Thomason, 1978) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



Theorem (Shunichi Toida, 1973) 

Let G be a graph where the degree, d(v), of every vertex v is even. 

Let e be an edge of G. 

Then the number of cycles containing edge e is odd. 

 

Theorem (Andrew Thomason, 1978) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

 

 

 

 

 

 

 

 

 

 

 



Theorem (Shunichi Toida, 1973) 

Let G be a graph where the degree, d(v), of every vertex v is even. 

Let e be an edge of G. 

Then the number of cycles containing edge e is odd. 

 

Since no vertex has odd degree, we could replace “cycles” by  

“cycles containing all the odd-degree vertices” 

 

 

 

Theorem (Andrew Thomason, 1978) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

 
 

 

 

 

 



Theorem (Shunichi Toida, 1973) 

Let G be a graph where the degree, d(v), of every vertex v is even. 

Let e be an edge of G. 

Then the number of cycles containing edge e is odd. 

 

Since no vertex has odd degree, we could replace “cycles” by  

“cycles containing all the odd-degree vertices” 

 

 

 

Theorem (Andrew Thomason, 1978) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

 

Since every vertex has odd degree, we could replace “Hamiltonian cycles” by  

“cycles containing all the odd-degree vertices” 

 

 



Theorem (Shunichi Toida, 1973) 

Let G be a graph where the degree, d(v), of every vertex v is even. 

Let e be an edge of G. 

Then the number of cycles containing edge e and all the odd-degree vertices  

is odd. 

 

Theorem (Andrew Thomason, 1978) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of cycles containing edge e and all the odd-degree vertices  

is even. 

 

 

 

 

 

 

 

 

 

 



Theorem (Shunichi Toida, 1973) 

Let G be a graph where the degree, d(v), of every vertex v is even. 

Let e be an edge of G. 

Then the number of cycles containing edge e and all the odd-degree vertices  

is odd. 

 

Theorem (Andrew Thomason, 1978) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of cycles containing edge e and all the odd-degree vertices  

is even. 

 

 

 

 

 

 

 

 

 

 



Theorem (Shunichi Toida, 1973) 

Let G be a graph where the degree, d(v), of every vertex v is even. 

Let e be an edge of G. 

Then the number of cycles containing edge e and all the odd-degree vertices  

is odd. 

 

Theorem (Andrew Thomason, 1978) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of cycles containing edge e and all the odd-degree vertices  

is even. 

 
All vertices have           All vertices have 

even degree            odd degree 

 

#cycles containing 

e and all odd-degree  odd           even 

vertices 

 

 

 

 



Theorem (Shunichi Toida, 1973) 

Let G be a graph where the degree, d(v), of every vertex v is even. 

Let e be an edge of G. 

Then the number of cycles containing edge e and all the odd-degree vertices  

is odd. 

 

Theorem (Andrew Thomason, 1978) 

Let G be a graph where the degree, d(v), of every vertex v is odd. 

Let e be an edge of G. 

Then the number of cycles containing edge e and all the odd-degree vertices  

is even. 

 
All vertices have    There is     …  All vertices have 

even degree  an odd-degree    odd degree 

         vertex 

#cycles containing 

e and all odd-degree  odd     even   …   even 

vertices 
 

Carsten Thomassen and I proved that the number of cycles containing e and all 

the odd-degree vertices is even as soon as the graph has an odd-degree vertex. 
 



A graph is called Eulerian if every vertex has even degree. 

 

Theorem (Carsten Thomassen and KC, 2018+) 

Let G be a graph and let e be an edge of G. 

The number of cycles containing edge e and all the odd-degree vertices  

is odd  

if and only if  

G is Eulerian. 

 

 

 

 

 

 

 

 

 

 

 

 



A graph is called Eulerian if every vertex has even degree. 

 

Theorem (Carsten Thomassen and KC, 2018+) 

Let G be a graph and let e be an edge of G. 

The number of cycles containing edge e and all the odd-degree vertices  

is odd  

if and only if  

G is Eulerian.  

 

Our proof uses “liftings” of even-degree vertices and is not algorithmic. 

I will give an exchange graph proof.  
 

 

 

 

 

     3 liftings 

 

 

 

 

 

 



Some background: 

Theorem (Andrew Thomason 1978) 
Let G be a graph where the degree, d(v), of every vertex v is odd. Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Corollary  
Let G be a graph where the degree, d(v), of every vertex v is odd. Let e be an edge of G. 

If there is one Hamiltonian cycle containing e, then there is another. 

 

Theorem (Carsten Thomassen, 2016, published 2018) 
Let G be a graph where no two even-degree vertices are adjacent. 

If there is one cycle containing all the odd-degree vertices, then there is another. 

 

Thomassen used four types of exchange operations,  

one of which was Andrew Thomassen’s “lollipop” exchange. 

 

Theorem (KC, 2017+) 
Let G be a graph where no two even-degree vertices are adjacent. Let e be an edge of G. 

Then the number of cycles containing e and all the odd-degree vertices is even. 

 

Follows from 

Theorem (KC, 2017+) 
Let G be a bipartite graph with bipartition (A,B), where every vertex in A has odd degree and every 

vertex in B has even degree.  Let e be an edge of G. 

Then the number of cycles containing e and all the odd-degree vertices is even. 

 



Some background: 

Theorem (Andrew Thomason 1978) 
Let G be a graph where the degree, d(v), of every vertex v is odd. Let e be an edge of G. 

Then the number of Hamiltonian cycles containing edge e is even. 

 

Corollary  
Let G be a graph where the degree, d(v), of every vertex v is odd. Let e be an edge of G. 

If there is one Hamiltonian cycle containing e, then there is another. 

 

Theorem (Carsten Thomassen, 2016, published 2018) 
Let G be a graph where no two even-degree vertices are adjacent. 

If there is one cycle containing all the odd-degree vertices, then there is another. 

 

Thomassen used four types of exchange operations,  

one of which was Andrew Thomassen’s “lollipop” exchange. 

 

Theorem (KC, 2017+) 
Let G be a graph where no two even-degree vertices are adjacent. 

Let e be an edge of G. 

Then the number of cycles containing e and all the odd-degree vertices is even. 

 

But it turned out that by generalizing the exchange operations into two types, one can get an 

exchange graph proof of a more general result. 

 

 



Theorem (Carsten Thomassen and KC, 2018+) 

Let G be a graph with an odd-degree vertex and let e be an edge of G. 

The number of cycles containing edge e and all the odd-degree vertices  

is even. 

 

This, combined with Toida’s Theorem gives: 

 

Theorem (Carsten Thomassen and KC, 2018+) 

Let G be a graph and let e be an edge of G. 

The number of cycles containing edge e and all the odd-degree vertices  

is odd  

if and only if  

G is Eulerian. 

 

Jack Edmonds and I (1999) gave an exchange graph proof of Toida’s Theorem. 

 

 

 

 

 

 



 

A Hamiltonian cycle containing edge e  in G  

         G 

        e       

corresponds to a Hamiltonian path in G – e   

which is a spanning tree with degree with degree 1         G-e 

at the ends of e and 2 elsewhere  

 

Defn. Given a graph  G  and a subgraph  S  of  G  (for us, a tree),  

the excess degree of a vertex is its degree in  G – E(S). 

 

Theorem (Ken Berman, 1986)  

Suppose graph G has a spanning tree T where the excess degree of each vertex 

is odd. Then the number of spanning trees of  G  with the same degree at each 

vertex as T  is even. 

 

 



Defn. Given a graph  G  and a subgraph  S  of  G  (for us, a tree),  

the excess degree of a vertex is its degree in  G – E(S). 

 

Theorem (Ken Berman, 1986)  

Suppose graph G has a spanning tree T where the excess degree of each vertex 

is odd. Then the number of spanning trees of  G  with the same degree at each 

vertex as T  is even. 

 

Jack Edmonds and I gave an exchange graph proof (1999) of a 

generalization – only vertices which are not leaves need to have excess 

degree 

 

Theorem  

Suppose graph G has a spanning tree T where the excess degree of each vertex 

which is not a leaf of T is odd. Then the number of spanning trees of  G  with 

the same degree at each vertex as T  is even. 



Let  B  be a set of even-degree vertices in a graph  G   

Let  A = V(G) -  B 

A tree  T*  is called good if it contains all of  A  

                                       and has degree 0 or 2 at each vertex of  B 
 

 

 

 

 

 

 

 

 

 

 

 



Let  B  be a set of even-degree vertices in a graph  G   

Let  A = V(G) -  B 

A tree  T*  is called good if it contains all of  A  

                                       and has degree 0 or 2 at each vertex of  B 
 

 

 

 

 

 

 

 

 

 

 

 



Let  B  be a set of even-degree vertices in a graph  G. A = V(G) -  B.     

A tree  T*  is called good if it contains all of  A  

                                       and has degree 0 or 2 at each vertex of  B 

A good tree  T  is called  T*- similar if it has the same degree at each 

vertex of  A  as  T*.   
 

 

 

                                   2        2 

           2        2      
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Let  B  be a set of even-degree vertices in a graph  G. A = V(G) -  B.     

A tree  T*  is called good if it contains all of  A  

                                       and has degree 0 or 2 at each vertex of  B 

A good tree  T  is called  T*- similar if it has the same degree at each 

vertex of  A  as  T*.   

Consider a good tree  T*  such that every vertex of  A  which is not a leaf  

            of  T*  has odd excess degree 

 

 

 

 

 

 

 

 

 



Let  B  be a set of even-degree vertices in a graph  G. A = V(G) -  B.     

A tree  T*  is called good if it contains all of  A  

                                       and has degree 0 or 2 at each vertex of  B 

 

Consider a good tree  T*  such that every vertex of  A  which is not a leaf  

            of  T*  has odd excess degree 

        3 

 

           1 

 

       1   2 but is a leaf 

 

        3       4 but is a leaf   

 

 



Let  B  be a set of even-degree vertices in a graph  G. A = V(G) -  B.     

A tree  T*  is called good if it contains all of  A  

                                       and has degree 0 or 2 at each vertex of  B 

A good tree  T  is called  T*- similar if it has the same degree at each 

vertex of  A  as  T*.   
 

 

Theorem (KC 2018+)  

Let  G  be a graph and  B  a set of even-degree vertices in  G.  

Let  A = V(G) -  B. 

Let  T*  be a good tree such that each vertex of  T* which is not a leaf has 

odd excess degree. 

Then the number of  T*–similar trees is even. 

 

 

Jack Edmonds and I (2017+) had proved this when G is a bipartite graph 

with biparition (A, B). 

 

  



Theorem (KC 2018+)  

Let  G  be a graph and  B  a set of even-degree vertices in  G.  

Let  A = V(G) -  B. 

Let  T*  be a good tree such that each vertex of  T* which is not a leaf has odd 

excess degree. Then the number of  T*–similar trees is even. 

 

Theorem (Carsten Thomassen and KC, 2018+) 

Let G be a graph with an odd-degree vertex and let e be an edge of G. 

The number of cycles containing edge e and all the odd-degree vertices  

is even. 

 

 

 

 

 

 

 

 

 

 



Theorem (KC 2018+)  

Let  G  be a graph and  B  a set of even-degree vertices in  G.  

Let  A = V(G) -  B. 

Let  T*  be a good tree such that each vertex of  T* which is not a leaf has odd 

excess degree. Then the number of  T*–similar trees is even. 

 

Theorem (Carsten Thomassen and KC, 2018+) 

Let G be a graph with an odd-degree vertex and let e be an edge of G. 

The number of cycles containing edge e and all the odd-degree vertices  

is even.  

 

Proof of the cycle theorem from the tree theorem. 

Let  C  be a cycle containing edge e= xy and all the odd-degree vertices. 

Let  B  be the set of even-degree vertices in  G, other than x  and  y (which may 

have odd or even degree). A = V(G) -  B. 

Then  T* = C-e is a tree in a graph  G-e. 

For each vertex of  A  in T* other than possibly leaves x and y, its excess degree 

in G-e is (an odd number – 2), thus odd. 

By the tree theorem, the number of   T*–similar trees is even.  

There is a 1-1 correspondence between these and cycles in G containing e and all 

the odd-degree vertices. 



Theorem (Shunichi Toida, 1973) 

Let G be a graph where the degree, d(v), of every vertex v is even (i.e. G is 

Eulerian).  Let e = st  be an edge of G. 

Then the number of cycles containing edge e is odd. 

 

Exchange Graph Proof (Jack Edmonds and KC, 1999) 

The odd-degree vertices of the exchange graph  X(G) are:  

 

 

     s      t       s      t            

edge e    cycles containing e 

 

The even-degree vertices of the exchange graph  X(G) are:   

     s      t           

paths beginning with st, of length > 1 

 

The exchange operations are adding or removing an edge meeting the last vertex 

of the path or an Andrew Thomason exchange: 

   

    s         t                                                        s         t        
     Path starting with e       Another path starting with e 



The odd-degree vertices of the exchange graph  X(G) are:   

 

 

     s      t       s      t                    z 

edge e    cycles containing e 

degree is d(t)-1     

which is odd 

 

The even-degree vertices of the exchange graph  X(G) are:  

     s      t              z 

paths beginning with st, of length > 1 

 

 

 

 

 

The exchange operations are adding or removing an edge meeting the last vertex 

of the path or an Andrew Thomason exchange: 

   

    s         t                                   z                   s         t        
     Path starting with e       Another path starting with e 



The odd-degree vertices of the exchange graph  X(G) are:   

 

 

     s      t       s      t                    z 

edge e    cycles containing e 

degree is d(t)-1    degree is 1    

which is odd    which is odd 

 

The even-degree vertices of the exchange graph  X(G) are:  

     s      t              z 

paths beginning with st, of length > 1 

 

 

 

 

 

The exchange operations are adding or removing an edge meeting the last vertex 

of the path or an Andrew Thomason exchange: 

   

    s         t                                   z                   s         t        
     Path starting with e       Another path starting with e 



The odd-degree vertices of the exchange graph  X(G) are:   

 

 

     s      t       s      t                    z 

edge e    cycles containing e 

degree is d(t)-1    degree is 1    

which is odd    which is odd 

 

The even-degree vertices of the exchange graph  X(G) are 

paths beginning with st, of length > 1 

 

 

  

     s      t              z 

                degree is d(z) which is even 

 

The exchange operations are adding or removing an edge meeting the last vertex 

of the path or an Andrew Thomason exchange: 

   

    s         t                                   z                   s         t        
     Path starting with e       Another path starting with e  


