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Edge-disjoint spanning trees

Theorem (Tutte)

A graph G = (V ,E ) has k edge-disjoint spanning trees if and only
if, for every partition F of V , eF ≥ k(|F| − 1) where eF is the
number of edges with end vertices in different sets of F .

Using matroid techniques, one can obtain a polynomial algorithm
which either finds a collection of k edge-disjoint spanning trees of
a given graph G or a partition F for which eF < k(|F| − 1) that
shows no such collection exists in G .



Branchings

Let D = (V ,A) be a digraph and r be a vertex of D. An
out-branching (respectively, in-branching) rooted in r in D is a
spanning subdigraph B+

r (respectively, B−r ) of D in which each
vertex v 6= r has precisely one arc entering (respectively, leaving)
and r has no entering (respectively, leaving) arc.

It follows from the definition that the arc set of an out-branching
(respectively, in-branching) of D induces a spanning tree in the
underlying graph of D.

D has an out-branching B+
r (respectively, an in-branching B−r ) if

and only if there is a directed path from r to v (respectively, from
v to r) for every vertex v of D.



Arc-disjoint out-branchings

Generalizing this to arc-disjoint out-branchings:

Theorem (Edmonds 1973)

A digraph D = (V ,A) has k arc-disjoint out-branchings, all rooted
at the vertex r if and only if d−(X ) ≥ k for every X ⊂ V − r

By Menger’s theorem, the condition above is equivalent to saying
that there are k arc-disjoint (r , v)-paths for every v ∈ V − r

Using flows it can be decided in polynomial time whether a digraph
contains k arc-disjoint out-branchings or k arc-disjoint
in-branchings.

Lovász found a polynomial algorithm to construct such branchings
when they exist



Arc-disjoint in- and out-branchings

Theorem (Thomassen 1986)

It is NP-complete to decide whether a digraph D = (V ,A) has an
out-branching B+

s and an in-branching B−s which are arc-disjoint.

Conjecture (Thomassen)

There exits a natural number K such that every K -arc-strong
digraph D = (V ,A) has a pair of arc-disjoint branchings B+

s ,B−s
for every s ∈ V .

Conjecture (B-J and Yeo)

There exits a natural number K such that every K -arc-strong
digraph D = (V ,A) has a pair of arc-disjoint spanning strong
subdigraphs.



Acyclic digraphs

Theorem (B.-J,Thomassé, Yeo)

Let D = (V ,A) be an acyclic digraph in which s is the unique
vertex of in-degree zero and t is the unique vertex of out degree
zero. Then D contains a pair of arc-disjoint out-branching and
in-branching rooted at s and t respectively if and only if∑

x∈X−

(d+(x)− 1) ≥ |X |. (1)

holds for every X ⊆ V \ {s}.

Furthermore, there exists a polynomial algorithm which either finds
the desired pair of branchings or a set X which violates (1).



2T-graphs

A 2T-graph is a graph whose edge set can be decomposed into
two edge-disjoint spanning trees.

For a graph G = (V ,E ) and X ⊆ V , the subgraph of G induced
by X is denoted by G [X ].

Theorem (Nash-Williams)

The edge set of a graph G is the union of two forests if and only if

|E (G [X ])| ≤ 2|X | − 2 ∀ ∅ 6= X ⊆ V (2)

Corollary

A graph G = (V ,E ) is a 2T-graph if and only if |V | ≥ 2,
|E | = 2|V | − 2, and (2) holds.



Generic circuits

Definition

A graph G = (V ,E ) is called a generic circuit if it satisfies the
following conditions:

(i) |E | = 2|V | − 2 > 0, and

(ii) |E (G [X ])| ≤ 2|X | − 3, for every X ⊂ V with
2 ≤ |X | ≤ |V | − 1.

Generic circuits are important in rigidity theory for graphs.

A celebrated theorem of Laman implies that, for any graph G , the
generic circuits are exactly the circuits of the so-called rigidity
matroid on the edges of G .



Good orientations

Given vertex ordering ≺ of a graph G , we use D≺ to denote the
acyclic orientation of G resulting from ≺, by orienting all edges
forward wrt to ≺ and call ≺ good if D≺ contains an out-branching
and and in-branching which are arc-disjoint. We also call an
orientation D of G good if D = D≺ for some good ordering ≺ of
G .

Thus a graph has a good ordering if and only if it has a good
orientation. We call such graphs good graphs.

By Theorem 6, one can check in polynomial time whether a given
ordering ≺ of G is good and return a pair of arc-disjoint
branchings in D≺ if ≺ is good.

However, no polynomial time recognition algorithm is known for
graphs that have good orderings.



An obvious necessary condition for a graph G to have a good
ordering is that G contains a pair of edge-disjoint spanning trees.

This condition alone implies the existence of an orientation D of G
having out-branching and an in-branching which are arc-disjoint.
But such an orientation may never be made acyclic for certain
graphs, which means that G does not have a good ordering.

On the other hand, to certify that a graph has a good ordering, it
suffices to exhibit an acyclic orientation of G , often in the form of
D≺, and show it contains a pair of arc-disjoint out-branching and
in-branching.



Generic circuits are good

Theorem

Let G = (V ,E ) be a generic circuit, let s, t be distinct vertices of
G and let e be an edge incident with at least one of s, t. Then the
following holds:

(i) G has a good ordering ≺ with corresponding branchings
B+,B− in which s is the root of B+, t is the root of B− and
e belongs to B+.

(ii) G has a good ordering ≺ with corresponding branchings
B+,B− in which s is the root of B+, t is the root of B− and
e belongs to B−.



Theorem

Let G be a 4-regular 4-connected graph in which every edge is on
a triangle. Then G − {e, f } is a spanning generic circuit for any
two disjoint edges e, f . In particular, G admits a good ordering.

Thomassen conjectured that every 4-connected line graph is
Hamiltonian; more generally, Matthews and Sumner conjectured
that every 4-connected claw-free graph (that is, a graph without
K1,3 as an induced subgraph) is Hamiltonian. These conjectures
are, indeed, equivalent and it suffices to consider 4-connected line
graphs of cubic graphs.

The theorem above shows that such graphs have a spanning
generic circuit (that is, a spanning cycle in the rigidity matroid).



Generic circuits in 2T-graphs

Every 2T-graph G on two or more vertices contains a generic
circuit as an induced subgraph. Indeed, any minimal set X with
|X | ≥ 2 and |E (G [X ])| = 2|X | − 2 induces a generic circuit in G

We say that H is a generic circuit of a graph G if H is a generic
circuit and an induced subgraph of G .

Proposition

Let G = (V ,E ) be a 2T-graph. Suppose that G1 = (V1,E1) and
G2 = (V2,E2) are distinct generic circuits of G . Then
|V1 ∩ V2| ≤ 1 and hence |E1 ∩ E2| = 0. In the case when
|V1 ∩ V2| = 0, there are at most two edges between G1 and G2.



Proposition

Let Gi = (Vi ,Ei ) where 1 ≤ i ≤ r be the collection of generic
circuits of a 2T-graph G = (V ,E ) and let G = (V , E) be the
hypergraph where E = {Vi : 1 ≤ i ≤ r}. Then G is a hyperforest.

Theorem

There exists a polynomial algorithm A which given a 2T-graph
G = (V ,E ) as input finds the collection G1,G2, . . . ,Gr , r ≥ 1 of
generic circuits of G .



Proof: This follows from the fact that the subset system
M = (E , I) is a matroid, where E ′ ⊆ E is in I precisely when
E ′ = ∅ or |E ′| ≤ 2|V (E ′)| − 3 holds, where V (E ′) is the set of
vertices spanned by the edges in E ′.

A polynomial independence oracle can be implemented via
orientations to achieve bounded indegrees.

The circuits of M are precisely the generic circuits of G . Recall
from matroid theory that an element e ∈ E belongs to a circuit of
M precisely when there exists a base of M in E − e. Thus we can
produce all the circuits by considering each edge e ∈ E one at a
time. If there is a base B ⊂ E − e, then B ∪ {e} contains a unique
circuit Ce which also contains e and we can find Ce in polynomial
time by using independence tests in M. Since the generic circuits
are edge-disjoint, by Proposition 12, we will find all generic circuits
by the process above.



Corollary

There exists a polynomial algorithm for deciding whether a
2T-graph G is a generic circuit.

Theorem

There exists a polynomial algorithm for deciding whether the
vertex set of a 2T-graph G = (V ,E ) decomposes into vertex
disjoint generic circuits. Furthermore, if there is such a
decomposition, then it is unique.

The proof above makes heavy use of the structure of generic
circuits in 2T-graphs. For general graphs the situation is much
worse.

Theorem

It is NP-complete to decide if the vertex set of a graph admits a
partition whose members induce generic circuits.



2T-graphs which are disjoint unions of generic circuits

Theorem

Let G = (V ,E ) be a 2T-graph whose generic components are
circuits. If the external edges in G form a matching, then G has a
good ordering.

A double tree is any graph that one can obtain from a tree T by
adding one parallel edge for each edge of T .

The quotient graph of a 2T-graph is the graph that we obtain by
contracting each generic circuit to a vertex.

Theorem

There exists a polynomial algorithm for checking whether a
2T-graph whose quotient is a double tree has a good ordering.



Figure: Example of a 3-connected 2T-graph G such that the set of
external edges almost form a matching and G has no good ordering. The
solid and dashed edges illustrate two spanning trees along the external
edges which can be extended arbitrarily into the circuits.



Remarks on good orientations

Conjecture

There exists a polynomial algorithm for deciding whether a
2T-graph has a good ordering.

Problem

What is the complexity of deciding whether a given graph has a
good ordering?



Part 2: antistrong digraphs and orientations

I In a digraph D, an antidirected path is a path in which the
arcs alternate and beginning and ending with a forward arc.

x

y

Theorem (A. Yeo, 2014)

Given two vertices x and y of D, it is NP-complete to decide if D
admits an antidirected path from x to y .



Antidirected trail

I An antidirected trail is a trail (no repeated arc) in which the
arcs alternate and beginning and ending with a forward arc.

x

y



Antidirected trail

I An antidirected trail is a trail (no repeated arc) in which the
arcs alternate and beginning and ending with a forward arc.

Theorem

It is polynomial to check if there exists an antidirected trail from x
to y .

Proof : B(D): the (oriented) adjacency bipartite
representation of D.

1

2
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4
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Antistrong digraph

I A digraph is antistrong if for all choices of distinct
x , y ∈ V (D) there exists an andirected trail from x to y .

Theorem

For |D| ≥ 3, D is antistrong iff B(D) is connected.

I in polytime we can check ’antistrong connectivity’.



Direct results: k-antistrong digraph

I D is k-antistrong if for all choices of distinct x , y ∈ D there
exist k-arc-disjoint antidirected trails from x to y .

Theorem

D is k-antistrong iff B(D) is k-edge-connected.

Corollaries:

I In polytime we can check ’k-antistrongness’.

I If D is 2k-antistrong then D contains k arc-disjoint spanning
antistrong subdigraphs.



Direct results: a matroid for antistrong connectivity

I A CAT or closed antidirected trail is an alternating closed
trail.

I The cat-free sets of arcs of D form a matroid M on the arcs
of D.

I D is antistrong if and only if M has rank 2|V (D)| − 1



CAT-free orientations

Theorem

Let G = (V ,E ) with |E | ≤ 2|V | − 1.
G has a CAT-free orientation iff:

|E (H)| ≤ 2|V (H)| − 1 for all (6= ∅) subgraphs H of G (3)

|E (H)| ≤ 2|V (H)| − 2 for all (6= ∅) bip. subgraphs H of G (4)

Remarks:

I (1) and (2) are necessary.

I No bipartite digraph is antistrong.



Cat-free orientations

Theorem

G satisfies

|E (H)| ≤ 2|V (H)| − 1 for all (6= ∅) subgraphs H of G (1)

|E (H)| ≤ 2|V (H)| − 2 for all (6= ∅) bip. subgraphs H of G (2)

iff it can be (edge)-partioned into a forest and an odd pseudoforest

A graph is an odd pseudoforest if it contains at most one cycle
and if there is a cycle, then it is odd.



Antistrong orientation

In general, for graphs:

Theorem

A graph G = (V ,E ) has an antistrong orientation if and only if

e(Q) ≥ |Q| − 1 + b(Q) (5)

for all partitions Q of V ,

where e(Q) denotes the number of edges of G between the
different parts of Q and b(Q) the number of parts of Q which
induce bipartite subgraphs of G .



Corollaries:

I We can decide if a graph admits an antistrong orientation in
polytime.

I Every 4-edge-connected nonbipartite graph has an antistrong
orientation.

I Every nonbipartite graph with three edge disjoint spanning
trees has an antistrong orientation.



Some other results:

I non disconnecting spanning antistrong subdigraph

I connected bipartite 2-detachments

I computing the minimum number of arcs to add to a graph G
such that the result is antistrong

I computing the maximum number of arc-disjoint spanning
antistrong subdigraphs



Some questions related to antistrongness:

Question: Can we decide in polytime if G has an orientation which
is both strong and antistrong?

Question: Suppose D is 1000-arc-strong and
1000-arc-antistrong, does D admit two arc-disjoint spanning
strong subdigraphs?


